Statistics and machine learning

Statistical Analyses for omics data and machine learning using Galaxy tools

Material

You can view the tutorial materials in different languages by clicking the dropdown icon next to the slides (slides) and tutorial (tutorial) buttons below.

Machine Learning

Tutorials introducing fundamental concepts and techniques, guiding learners through data preprocessing, model training, evaluation, and application.

Lesson Slides Hands-on Recordings Input dataset Workflows
Foundational Aspects of Machine Learning using Python

Generative Artificial Intelligence and Large Langage Model

Tutorials covering the creation, pretraining, and applications of Generative Artificial Intelligence and Large Language Models.

Lesson Slides Hands-on Recordings Input dataset Workflows
Pretraining a Large Language Model (LLM) from Scratch on DNA Sequences
Fine-tuning a LLM for DNA Sequence Classification
Predicting Mutation Impact with Zero-shot Learning using a pretrained DNA LLM
Generating Artificial Yeast DNA Sequences using a DNA LLM

Other

Assorted Tutorials

Lesson Slides Hands-on Recordings Input dataset Workflows
A Docker-based interactive Jupyterlab powered by GPU for artificial intelligence in Galaxy
Age prediction using machine learning
Basics of machine learning
Building the LORIS LLR6 PanCancer Model Using PyCaret
Classification in Machine Learning
Clustering in Machine Learning
Deep Learning (Part 1) - Feedforward neural networks (FNN)
Deep Learning (Part 2) - Recurrent neural networks (RNN)
Deep Learning (Part 3) - Convolutional neural networks (CNN)
Fine tune large protein model (ProtTrans) using HuggingFace
Image classification in Galaxy with fruit 360 dataset
Interval-Wise Testing for omics data
Introduction to Machine Learning using R
Introduction to deep learning
Machine learning: classification and regression
PAPAA PI3K_OG: PanCancer Aberrant Pathway Activity Analysis
Regression in Machine Learning
Supervised Learning with Hyperdimensional Computing
Text-mining with the SimText toolset
Train and Test a Deep learning image classifier with Galaxy-Ludwig
Regulations/standards for AI using DOME

Frequently Asked Questions

Common questions regarding this topic have been collected on a dedicated FAQ page . Common questions related to specific tutorials can be accessed from the tutorials themselves.

Follow topic updates rss-feed with our RSS Feed

Community Resources

Community Home Maintainer Home

Editorial Board

This material is reviewed by our Editorial Board:

Marzia A Cremona avatar Marzia A Cremonaorcid logoFabio Cumbo avatar Fabio CumboAnup Kumar avatar Anup Kumar

Contributors

This material was contributed to by:

orcid logoArmin Dadras avatar Armin DadrasGildas Le Corguillé avatar Gildas Le CorguilléWandrille Duchemin avatar Wandrille Ducheminorcid logoJeremy Goecks avatar Jeremy GoecksMélanie Petera avatar Mélanie Peteraorcid logoMarie Gramm avatar Marie GrammRalf Gabriels avatar Ralf Gabrielsorcid logoAnthony Bretaudeau avatar Anthony Bretaudeauorcid logoFotis E. Psomopoulos avatar Fotis E. Psomopoulosorcid logoHelena Rasche avatar Helena Rascheorcid logoAlireza Khanteymoori avatar Alireza KhanteymooriAnup Kumar avatar Anup KumarDennis Lal group avatar Dennis Lal grouporcid logoFabio Cumbo avatar Fabio Cumboorcid logoNate Coraor avatar Nate Coraororcid logoMartin Čech avatar Martin ČechKaivan Kamali avatar Kaivan KamaliEkaterina Polkh avatar Ekaterina Polkhorcid logoMichelle Terese Savage avatar Michelle Terese SavageSimon Bray avatar Simon Brayorcid logoJunhao Qiu avatar Junhao Qiuorcid logoStella Fragkouli avatar Stella FragkouliMarzia A Cremona avatar Marzia A Cremonaorcid logoPaulo Cilas Morais Lyra Junior avatar Paulo Cilas Morais Lyra Juniororcid logoBjörn Grüning avatar Björn Grüningorcid logoDaniel Blankenberg avatar Daniel Blankenbergorcid logoBérénice Batut avatar Bérénice BatutRaphael Mourad avatar Raphael Mouradorcid logoTeresa Müller avatar Teresa MüllerVijay avatar Vijayorcid logoSaskia Hiltemann avatar Saskia Hiltemann

Funding

These individuals or organisations provided funding support for the development of this resource