QC + Mapping + Counting - Ref Based RNA Seq - Transcriptomics - GTN - subworkflows
transcriptomics-ref-based/qc-mapping-counting
Launch in Tutorial Mode
question
galaxy-download Download
galaxy-download Download
flowchart TD 0["ℹ️ Input Collection\nPaired list collection with PE fastqs"]; style 0 stroke:#2c3143,stroke-width:4px; 1["ℹ️ Input Dataset\nDrosophila_melanogaster.BDGP6.32.109_UCSC.gtf.gz"]; style 1 stroke:#2c3143,stroke-width:4px; 2["🛠️ Subworkflow\nFastQC"]; style 2 fill:#edd,stroke:#900,stroke-width:4px; 0 -->|output| 2; 5f7652f1-e225-4ad1-8dbd-4d21544edb89["Output\nmultiqc_fastqc_html"]; 2 --> 5f7652f1-e225-4ad1-8dbd-4d21544edb89; style 5f7652f1-e225-4ad1-8dbd-4d21544edb89 stroke:#2c3143,stroke-width:4px; 3["🛠️ Subworkflow\ncutadapt"]; style 3 fill:#edd,stroke:#900,stroke-width:4px; 0 -->|output| 3; 41c7fbb5-655b-457c-8ba7-0e2eeab3d7ee["Output\nmultiqc_cutadapt_html"]; 3 --> 41c7fbb5-655b-457c-8ba7-0e2eeab3d7ee; style 41c7fbb5-655b-457c-8ba7-0e2eeab3d7ee stroke:#2c3143,stroke-width:4px; 4["🛠️ Subworkflow\nSTAR + multiQC"]; style 4 fill:#edd,stroke:#900,stroke-width:4px; 1 -->|output| 4; 3 -->|out_pairs| 4; 8aa5ef30-3f09-4a93-944d-0d89101c056a["Output\nmultiqc_star_html"]; 4 --> 8aa5ef30-3f09-4a93-944d-0d89101c056a; style 8aa5ef30-3f09-4a93-944d-0d89101c056a stroke:#2c3143,stroke-width:4px; 11af5c57-91b4-496c-9b0c-b02904963f81["Output\nSTAR_BAM"]; 4 --> 11af5c57-91b4-496c-9b0c-b02904963f81; style 11af5c57-91b4-496c-9b0c-b02904963f81 stroke:#2c3143,stroke-width:4px; 5["🛠️ Subworkflow\nmore QC"]; style 5 fill:#edd,stroke:#900,stroke-width:4px; 1 -->|output| 5; 4 -->|STAR_BAM| 5; f2eed352-ca21-4d65-8810-f5a1d3c282b4["Output\nmultiqc_read_distrib_html"]; 5 --> f2eed352-ca21-4d65-8810-f5a1d3c282b4; style f2eed352-ca21-4d65-8810-f5a1d3c282b4 stroke:#2c3143,stroke-width:4px; b306cb12-a275-4c6d-b609-47fdc208864b["Output\nmultiqc_reads_per_chrom_html"]; 5 --> b306cb12-a275-4c6d-b609-47fdc208864b; style b306cb12-a275-4c6d-b609-47fdc208864b stroke:#2c3143,stroke-width:4px; 3375d63c-cdc3-4fbb-8a55-6f504c934918["Output\nmultiqc_gene_body_cov_html"]; 5 --> 3375d63c-cdc3-4fbb-8a55-6f504c934918; style 3375d63c-cdc3-4fbb-8a55-6f504c934918 stroke:#2c3143,stroke-width:4px; 3ea82568-5698-49a7-88fe-91381070aac2["Output\nmultiqc_dup_html"]; 5 --> 3ea82568-5698-49a7-88fe-91381070aac2; style 3ea82568-5698-49a7-88fe-91381070aac2 stroke:#2c3143,stroke-width:4px; 6["🛠️ Subworkflow\nDetermine strandness"]; style 6 fill:#edd,stroke:#900,stroke-width:4px; 4 -->|STAR_BAM| 6; 1 -->|output| 6; 4 -->|signal_unique_str1| 6; 4 -->|signal_unique_str2| 6; 4 -->|reads_per_gene| 6; fb810859-f2d0-43f8-ac7c-5c714c5c6805["Output\ninferexperiment"]; 6 --> fb810859-f2d0-43f8-ac7c-5c714c5c6805; style fb810859-f2d0-43f8-ac7c-5c714c5c6805 stroke:#2c3143,stroke-width:4px; 9727824a-3eb2-4430-92d1-b3c40c3041d1["Output\npgt"]; 6 --> 9727824a-3eb2-4430-92d1-b3c40c3041d1; style 9727824a-3eb2-4430-92d1-b3c40c3041d1 stroke:#2c3143,stroke-width:4px; 105313d8-e31a-405d-8fcd-cc5fd93275e2["Output\nmultiqc_star_counts_html"]; 6 --> 105313d8-e31a-405d-8fcd-cc5fd93275e2; style 105313d8-e31a-405d-8fcd-cc5fd93275e2 stroke:#2c3143,stroke-width:4px; 7["🛠️ Subworkflow\ncount STAR"]; style 7 fill:#edd,stroke:#900,stroke-width:4px; 1 -->|output| 7; 4 -->|reads_per_gene| 7; 5fee8aff-4023-43f1-a653-f5af5357d798["Output\ncounts_from_star"]; 7 --> 5fee8aff-4023-43f1-a653-f5af5357d798; style 5fee8aff-4023-43f1-a653-f5af5357d798 stroke:#2c3143,stroke-width:4px; bd3388e6-5b45-4fdc-9780-3efd1c34ebf8["Output\ncounts_from_star_sorted"]; 7 --> bd3388e6-5b45-4fdc-9780-3efd1c34ebf8; style bd3388e6-5b45-4fdc-9780-3efd1c34ebf8 stroke:#2c3143,stroke-width:4px; 7b7c698b-4808-4b45-adf1-686f8d273d18["Output\nGene length"]; 7 --> 7b7c698b-4808-4b45-adf1-686f8d273d18; style 7b7c698b-4808-4b45-adf1-686f8d273d18 stroke:#2c3143,stroke-width:4px; 8["🛠️ Subworkflow\ncount featureCount"]; style 8 fill:#edd,stroke:#900,stroke-width:4px; 1 -->|output| 8; 4 -->|STAR_BAM| 8; f0de4714-4df8-4506-90d9-384537ad663e["Output\nfeatureCounts_sorted"]; 8 --> f0de4714-4df8-4506-90d9-384537ad663e; style f0de4714-4df8-4506-90d9-384537ad663e stroke:#2c3143,stroke-width:4px; 8b9d6c76-6e82-4691-b8bc-9996d6ae1594["Output\nfeatureCounts_gene_length"]; 8 --> 8b9d6c76-6e82-4691-b8bc-9996d6ae1594; style 8b9d6c76-6e82-4691-b8bc-9996d6ae1594 stroke:#2c3143,stroke-width:4px; 152ba01e-d4f2-4227-8812-87648a1c19ea["Output\nmultiqc_featureCounts_html"]; 8 --> 152ba01e-d4f2-4227-8812-87648a1c19ea; style 152ba01e-d4f2-4227-8812-87648a1c19ea stroke:#2c3143,stroke-width:4px; 46c7a2e8-7819-4715-a028-7ad1de9ed605["Output\nfeatureCounts"]; 8 --> 46c7a2e8-7819-4715-a028-7ad1de9ed605; style 46c7a2e8-7819-4715-a028-7ad1de9ed605 stroke:#2c3143,stroke-width:4px;
Inputs
Input | Label |
---|---|
Input dataset collection | Paired list collection with PE fastqs |
Input dataset | Drosophila_melanogaster.BDGP6.32.109_UCSC.gtf.gz |
Outputs
From | Output | Label |
---|---|---|
FastQC | ||
cutadapt | ||
STAR + multiQC | ||
more QC | ||
Determine strandness | ||
count STAR | ||
count featureCount |
Tools
To use these workflows in Galaxy you can either click the links to download the workflows, or you can right-click and copy the link to the workflow which can be used in the Galaxy form to import workflows.
Importing into Galaxy
Below are the instructions for importing these workflows directly into your Galaxy server of choice to start using them!Hands-on: Importing a workflow
- Click on Workflow on the top menu bar of Galaxy. You will see a list of all your workflows.
- Click on galaxy-upload Import at the top-right of the screen
- Provide your workflow
- Option 1: Paste the URL of the workflow into the box labelled “Archived Workflow URL”
- Option 2: Upload the workflow file in the box labelled “Archived Workflow File”
- Click the Import workflow button
Below is a short video demonstrating how to import a workflow from GitHub using this procedure:
Version History
Version | Commit | Time | Comments |
---|---|---|---|
19 | a1251f286 | 2024-07-05 09:38:54 | Removed 'comments' tags |
18 | 068c0f303 | 2024-07-05 09:28:05 | Updated 'QC + Mapping + Counting' workflow |
17 | 3377d5c6f | 2023-10-20 13:31:21 | update workflow to have steps in the same order as in the tutorial |
16 | 41dead43e | 2023-05-02 10:31:07 | add mo orcid to workflows |
15 | 36eb5cf82 | 2023-04-28 17:26:00 | update workflows and tests |
14 | f35bb9e74 | 2023-04-27 13:30:02 | update zenodo try to make workflow test working |
13 | 8fc9c9026 | 2023-04-25 07:46:15 | add creators and licence to workflows |
12 | dc21d9ddb | 2023-04-22 08:29:08 | update images and results, rearrange workflow for part1 |
11 | 9921a8623 | 2023-04-21 12:37:10 | Update first part of the tutorial |
10 | 6203157c4 | 2022-05-05 08:25:29 | revert bdc1fd3 |
9 | 4d2f611a6 | 2022-04-28 15:20:51 | subset BAM before gene body coverage |
8 | bdc1fd3ce | 2022-04-28 08:35:56 | switch order of fastqc and flatten |
7 | 8ff9bda0f | 2022-04-14 21:15:02 | update workflow to fit test |
6 | bae8287b9 | 2022-04-14 12:52:02 | update qc workflow and test |
5 | e08c38b2b | 2022-04-05 19:36:51 | add tag |
4 | 35d565217 | 2022-04-05 13:18:22 | update workflows |
3 | 667ff3de9 | 2020-01-22 10:59:29 | annotation |
2 | eb4d724e0 | 2020-01-15 10:41:35 | Workflow renaming |
1 | e477f2b7f | 2019-09-10 09:22:59 | Split workflow and add more tests |
For Admins
Installing the workflow tools
wget https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/ref-based/workflows/qc-mapping-counting.ga -O workflow.ga workflow-to-tools -w workflow.ga -o tools.yaml shed-tools install -g GALAXY -a API_KEY -t tools.yaml workflow-install -g GALAXY -a API_KEY -w workflow.ga --publish-workflows