DEG Part - Ref Based RNA Seq - Transcriptomics - GTN

transcriptomics-ref-based/deg-analysis

Author(s)
Bérénice Batut, Mallory Freeberg, Mo Heydarian, Anika Erxleben, Pavankumar Videm, Clemens Blank, Maria Doyle, Nicola Soranzo, Peter van Heusden, Lucille Delisle
version Version
8
last_modification Last updated
Jul 5, 2024
license License
MIT
galaxy-tags Tags
transcriptomics

Features

Tutorial
hands_on Reference-based RNA-Seq data analysis
workflow Other workflows associated with this material
Workflow Testing
Tests: ✅
Results: Not yet automated
FAIRness purl PURL
https://gxy.io/GTN:W00244
RO-Crate logo with flask Download Workflow RO-Crate Workflowhub cloud with gears logo View on (Dev) WorkflowHub
Launch in Tutorial Mode question
galaxy-download Download
flowchart TD
  0["ℹ️ Input Collection\nInput Dataset Collection"];
  style 0 stroke:#2c3143,stroke-width:4px;
  1["ℹ️ Input Dataset\nDrosophila_melanogaster.BDGP6.32.109_UCSC.gtf.gz"];
  style 1 stroke:#2c3143,stroke-width:4px;
  2["ℹ️ Input Dataset\nheader"];
  style 2 stroke:#2c3143,stroke-width:4px;
  3["ℹ️ Input Dataset\nKEGG pathways to plot"];
  style 3 stroke:#2c3143,stroke-width:4px;
  4["Extract samples’ name"];
  0 -->|output| 4;
  5["Compute gene length"];
  1 -->|output| 5;
  6["Extract groups"];
  4 -->|output| 6;
  7["Change Case"];
  5 -->|length| 7;
  8["Tag elements with groups"];
  0 -->|output| 8;
  6 -->|outfile| 8;
  9["Differential Analysis"];
  8 -->|output| 9;
  c1ff3e9a-46d3-4862-adb6-076ea951be26["Output\nDESeq2_plots"];
  9 --> c1ff3e9a-46d3-4862-adb6-076ea951be26;
  style c1ff3e9a-46d3-4862-adb6-076ea951be26 stroke:#2c3143,stroke-width:4px;
  b430e84e-cfa5-48e8-92a7-ef5630ced1e5["Output\nDESeq2_normalized_counts"];
  9 --> b430e84e-cfa5-48e8-92a7-ef5630ced1e5;
  style b430e84e-cfa5-48e8-92a7-ef5630ced1e5 stroke:#2c3143,stroke-width:4px;
  10["Compute"];
  9 -->|deseq_out| 10;
  11["Annotate DESeq2/DEXSeq output tables"];
  1 -->|output| 11;
  9 -->|deseq_out| 11;
  12["Table Compute"];
  9 -->|counts_out| 12;
  13["Cut"];
  10 -->|out_file1| 13;
  14["Concatenate datasets"];
  2 -->|output| 14;
  11 -->|output| 14;
  11f46837-7dbb-453b-962a-3c97cb0faad4["Output\nDESeq2_annotated_results_with_header"];
  14 --> 11f46837-7dbb-453b-962a-3c97cb0faad4;
  style 11f46837-7dbb-453b-962a-3c97cb0faad4 stroke:#2c3143,stroke-width:4px;
  15["Table Compute"];
  9 -->|counts_out| 15;
  12 -->|table| 15;
  32004d23-7c99-4405-a65f-fd861b40c949["Output\nz_score"];
  15 --> 32004d23-7c99-4405-a65f-fd861b40c949;
  style 32004d23-7c99-4405-a65f-fd861b40c949 stroke:#2c3143,stroke-width:4px;
  16["Change Case"];
  13 -->|out_file1| 16;
  17["Filter"];
  14 -->|out_file1| 17;
  18["goseq"];
  16 -->|out_file1| 18;
  7 -->|out_file1| 18;
  a0dd7397-7262-4336-abd6-a915ab6be36a["Output\ngo_genes"];
  18 --> a0dd7397-7262-4336-abd6-a915ab6be36a;
  style a0dd7397-7262-4336-abd6-a915ab6be36a stroke:#2c3143,stroke-width:4px;
  659fec58-4ed5-4aee-9e50-7acce21113cb["Output\ngo_plot"];
  18 --> 659fec58-4ed5-4aee-9e50-7acce21113cb;
  style 659fec58-4ed5-4aee-9e50-7acce21113cb stroke:#2c3143,stroke-width:4px;
  c06c58d4-ab5d-49da-b481-baf668c6fc29["Output\ngo_terms"];
  18 --> c06c58d4-ab5d-49da-b481-baf668c6fc29;
  style c06c58d4-ab5d-49da-b481-baf668c6fc29 stroke:#2c3143,stroke-width:4px;
  19["goseq"];
  16 -->|out_file1| 19;
  7 -->|out_file1| 19;
  9872b017-9b39-4cd3-b232-a305979a782b["Output\nkegg_genes"];
  19 --> 9872b017-9b39-4cd3-b232-a305979a782b;
  style 9872b017-9b39-4cd3-b232-a305979a782b stroke:#2c3143,stroke-width:4px;
  8d0ac5be-ac7d-4f10-85ac-d3461f561a50["Output\nkegg_pathways"];
  19 --> 8d0ac5be-ac7d-4f10-85ac-d3461f561a50;
  style 8d0ac5be-ac7d-4f10-85ac-d3461f561a50 stroke:#2c3143,stroke-width:4px;
  20["Cut"];
  17 -->|out_file1| 20;
  21["Filter"];
  17 -->|out_file1| 21;
  22["Filter"];
  18 -->|wallenius_tab| 22;
  ae762394-0e90-4b9a-a7b4-7cffeccc80a7["Output\ngo_underrepresented"];
  22 --> ae762394-0e90-4b9a-a7b4-7cffeccc80a7;
  style ae762394-0e90-4b9a-a7b4-7cffeccc80a7 stroke:#2c3143,stroke-width:4px;
  23["Filter"];
  18 -->|wallenius_tab| 23;
  b788d5b7-119c-418a-a12b-a97ef7ea5bf2["Output\ngo_overrepresented"];
  23 --> b788d5b7-119c-418a-a12b-a97ef7ea5bf2;
  style b788d5b7-119c-418a-a12b-a97ef7ea5bf2 stroke:#2c3143,stroke-width:4px;
  24["Filter"];
  19 -->|wallenius_tab| 24;
  69f80c89-fc7d-4bea-836f-34e68615abcd["Output\nkegg_underrepresented"];
  24 --> 69f80c89-fc7d-4bea-836f-34e68615abcd;
  style 69f80c89-fc7d-4bea-836f-34e68615abcd stroke:#2c3143,stroke-width:4px;
  25["Filter"];
  19 -->|wallenius_tab| 25;
  930f1461-0ade-4744-a83d-843108c4b597["Output\nkegg_overrepresented"];
  25 --> 930f1461-0ade-4744-a83d-843108c4b597;
  style 930f1461-0ade-4744-a83d-843108c4b597 stroke:#2c3143,stroke-width:4px;
  26["Pathview"];
  20 -->|out_file1| 26;
  3 -->|output| 26;
  7cdd4475-6de3-4c02-be8d-d76e788980f6["Output\npathview_plot"];
  26 --> 7cdd4475-6de3-4c02-be8d-d76e788980f6;
  style 7cdd4475-6de3-4c02-be8d-d76e788980f6 stroke:#2c3143,stroke-width:4px;
  27["Join two Datasets"];
  9 -->|counts_out| 27;
  21 -->|out_file1| 27;
  28["Group"];
  22 -->|out_file1| 28;
  d1ae921d-2e2b-46d8-95a2-4443f5a1b3b4["Output\ngo_underrepresented_categories"];
  28 --> d1ae921d-2e2b-46d8-95a2-4443f5a1b3b4;
  style d1ae921d-2e2b-46d8-95a2-4443f5a1b3b4 stroke:#2c3143,stroke-width:4px;
  29["Group"];
  23 -->|out_file1| 29;
  4d2d01eb-15d2-4863-a522-9462c15eb51c["Output\ngo_overrepresented_categories"];
  29 --> 4d2d01eb-15d2-4863-a522-9462c15eb51c;
  style 4d2d01eb-15d2-4863-a522-9462c15eb51c stroke:#2c3143,stroke-width:4px;
  30["Cut"];
  27 -->|out_file1| 30;
  31["heatmap2"];
  30 -->|out_file1| 31;
  42cb6b68-4ed6-4b6e-9312-744b9e0c1442["Output\nheatmap_log"];
  31 --> 42cb6b68-4ed6-4b6e-9312-744b9e0c1442;
  style 42cb6b68-4ed6-4b6e-9312-744b9e0c1442 stroke:#2c3143,stroke-width:4px;
  32["heatmap2"];
  30 -->|out_file1| 32;
  0ecef5aa-76ed-4fe7-9244-3b32d231e7f3["Output\nheatmap_zscore"];
  32 --> 0ecef5aa-76ed-4fe7-9244-3b32d231e7f3;
  style 0ecef5aa-76ed-4fe7-9244-3b32d231e7f3 stroke:#2c3143,stroke-width:4px;

Inputs

Input Label
Input dataset collection Input Dataset Collection
Input dataset Drosophila_melanogaster.BDGP6.32.109_UCSC.gtf.gz
Input dataset header
Input dataset KEGG pathways to plot

Outputs

From Output Label
toolshed.g2.bx.psu.edu/repos/iuc/deseq2/deseq2/2.11.40.8+galaxy0 DESeq2 Differential Analysis
toolshed.g2.bx.psu.edu/repos/bgruening/text_processing/tp_cat/9.3+galaxy1 Concatenate datasets
toolshed.g2.bx.psu.edu/repos/iuc/table_compute/table_compute/1.2.4+galaxy0 Table Compute
toolshed.g2.bx.psu.edu/repos/iuc/goseq/goseq/1.50.0+galaxy0 goseq
toolshed.g2.bx.psu.edu/repos/iuc/goseq/goseq/1.50.0+galaxy0 goseq
Filter1 Filter
Filter1 Filter
Filter1 Filter
Filter1 Filter
toolshed.g2.bx.psu.edu/repos/iuc/pathview/pathview/1.34.0+galaxy0 Pathview
Grouping1 Group
Grouping1 Group
toolshed.g2.bx.psu.edu/repos/iuc/ggplot2_heatmap2/ggplot2_heatmap2/3.1.3.1+galaxy0 heatmap2
toolshed.g2.bx.psu.edu/repos/iuc/ggplot2_heatmap2/ggplot2_heatmap2/3.1.3.1+galaxy0 heatmap2

Tools

Tool Links
ChangeCase
Cut1
Filter1
Grouping1
__TAG_FROM_FILE__
join1
toolshed.g2.bx.psu.edu/repos/bgruening/text_processing/tp_cat/9.3+galaxy1 View in ToolShed
toolshed.g2.bx.psu.edu/repos/bgruening/text_processing/tp_replace_in_line/9.3+galaxy1 View in ToolShed
toolshed.g2.bx.psu.edu/repos/devteam/column_maker/Add_a_column1/2.0 View in ToolShed
toolshed.g2.bx.psu.edu/repos/iuc/collection_element_identifiers/collection_element_identifiers/0.0.2 View in ToolShed
toolshed.g2.bx.psu.edu/repos/iuc/deg_annotate/deg_annotate/1.1.0 View in ToolShed
toolshed.g2.bx.psu.edu/repos/iuc/deseq2/deseq2/2.11.40.8+galaxy0 View in ToolShed
toolshed.g2.bx.psu.edu/repos/iuc/ggplot2_heatmap2/ggplot2_heatmap2/3.1.3.1+galaxy0 View in ToolShed
toolshed.g2.bx.psu.edu/repos/iuc/goseq/goseq/1.50.0+galaxy0 View in ToolShed
toolshed.g2.bx.psu.edu/repos/iuc/length_and_gc_content/length_and_gc_content/0.1.2 View in ToolShed
toolshed.g2.bx.psu.edu/repos/iuc/pathview/pathview/1.34.0+galaxy0 View in ToolShed
toolshed.g2.bx.psu.edu/repos/iuc/table_compute/table_compute/1.2.4+galaxy0 View in ToolShed

To use these workflows in Galaxy you can either click the links to download the workflows, or you can right-click and copy the link to the workflow which can be used in the Galaxy form to import workflows.

Importing into Galaxy

Below are the instructions for importing these workflows directly into your Galaxy server of choice to start using them!
Hands-on: Importing a workflow
  • Click on Workflow on the top menu bar of Galaxy. You will see a list of all your workflows.
  • Click on galaxy-upload Import at the top-right of the screen
  • Provide your workflow
    • Option 1: Paste the URL of the workflow into the box labelled “Archived Workflow URL”
    • Option 2: Upload the workflow file in the box labelled “Archived Workflow File”
  • Click the Import workflow button

Below is a short video demonstrating how to import a workflow from GitHub using this procedure:

Video: Importing a workflow from URL

Version History

Version Commit Time Comments
24 a1251f286 2024-07-05 09:38:54 Removed 'comments' tags
23 7d1cc771a 2024-07-05 09:15:02 Updated tools in 'DEG Part' workflow
22 41dead43e 2023-05-02 10:31:07 add mo orcid to workflows
21 36eb5cf82 2023-04-28 17:26:00 update workflows and tests
20 bba94e019 2023-04-25 09:47:41 fix workflow of DEG
19 639885e9c 2023-04-25 08:06:12 fix deseq2 params
18 0e8a4c42b 2023-04-25 07:58:48 fix input label in workflow deg
17 8fc9c9026 2023-04-25 07:46:15 add creators and licence to workflows
16 e9ac61d9e 2023-04-25 07:32:39 update deg-analysis workflow
15 543df91d6 2023-01-11 16:53:40 Update Compute tool to latest version
14 47113bebd 2022-06-30 15:22:32 Fix additional error
13 f5e192fc7 2022-06-30 14:29:26 Fix workflow
12 815b50713 2022-04-15 15:14:47 fix header parameter in deseq2 workflow
11 d377962b2 2022-04-14 22:18:06 update workflow
10 19e4e0680 2022-04-14 12:29:01 update DEG wf and test
9 d3beb91a7 2022-04-14 08:30:39 update deg-analysis workflow and test
8 a6e8658a7 2022-04-13 16:01:54 update workflow for part2
7 e08c38b2b 2022-04-05 19:36:51 add tag
6 e675ce786 2022-04-05 13:27:17 small updates
5 35d565217 2022-04-05 13:18:22 update workflows
4 05462ddf4 2022-04-05 11:54:45 update workflow
3 667ff3de9 2020-01-22 10:59:29 annotation
2 eb4d724e0 2020-01-15 10:41:35 Workflow renaming
1 e477f2b7f 2019-09-10 09:22:59 Split workflow and add more tests

For Admins

Installing the workflow tools

wget https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/ref-based/workflows/deg-analysis.ga -O workflow.ga
workflow-to-tools -w workflow.ga -o tools.yaml
shed-tools install -g GALAXY -a API_KEY -t tools.yaml
workflow-install -g GALAXY -a API_KEY -w workflow.ga --publish-workflows