Workflows
These workflows are associated with Reference-based RNA-Seq data analysis
To use these workflows in Galaxy you can either click the links to download the workflows, or you can right-click and copy the link to the workflow which can be used in the Galaxy form to import workflows.
DEG Part - Ref Based RNA Seq - Transcriptomics - GTN
Bérénice Batut, Mallory Freeberg, Mo Heydarian, Anika Erxleben, Pavankumar Videm, Clemens Blank, Maria Doyle, Nicola Soranzo, Peter van Heusden, Lucille Delisle
Last updated Jul 5, 2024
Launch in Tutorial Mode
License:
MIT
Tests: ✅
Results: Not yet automated
flowchart TD 0["ℹ️ Input Collection\nInput Dataset Collection"]; style 0 stroke:#2c3143,stroke-width:4px; 1["ℹ️ Input Dataset\nDrosophila_melanogaster.BDGP6.32.109_UCSC.gtf.gz"]; style 1 stroke:#2c3143,stroke-width:4px; 2["ℹ️ Input Dataset\nheader"]; style 2 stroke:#2c3143,stroke-width:4px; 3["ℹ️ Input Dataset\nKEGG pathways to plot"]; style 3 stroke:#2c3143,stroke-width:4px; 4["Extract samples’ name"]; 0 -->|output| 4; 5["Compute gene length"]; 1 -->|output| 5; 6["Extract groups"]; 4 -->|output| 6; 7["Change Case"]; 5 -->|length| 7; 8["Tag elements with groups"]; 0 -->|output| 8; 6 -->|outfile| 8; 9["Differential Analysis"]; 8 -->|output| 9; c1ff3e9a-46d3-4862-adb6-076ea951be26["Output\nDESeq2_plots"]; 9 --> c1ff3e9a-46d3-4862-adb6-076ea951be26; style c1ff3e9a-46d3-4862-adb6-076ea951be26 stroke:#2c3143,stroke-width:4px; b430e84e-cfa5-48e8-92a7-ef5630ced1e5["Output\nDESeq2_normalized_counts"]; 9 --> b430e84e-cfa5-48e8-92a7-ef5630ced1e5; style b430e84e-cfa5-48e8-92a7-ef5630ced1e5 stroke:#2c3143,stroke-width:4px; 10["Compute"]; 9 -->|deseq_out| 10; 11["Annotate DESeq2/DEXSeq output tables"]; 1 -->|output| 11; 9 -->|deseq_out| 11; 12["Table Compute"]; 9 -->|counts_out| 12; 13["Cut"]; 10 -->|out_file1| 13; 14["Concatenate datasets"]; 2 -->|output| 14; 11 -->|output| 14; 11f46837-7dbb-453b-962a-3c97cb0faad4["Output\nDESeq2_annotated_results_with_header"]; 14 --> 11f46837-7dbb-453b-962a-3c97cb0faad4; style 11f46837-7dbb-453b-962a-3c97cb0faad4 stroke:#2c3143,stroke-width:4px; 15["Table Compute"]; 9 -->|counts_out| 15; 12 -->|table| 15; 32004d23-7c99-4405-a65f-fd861b40c949["Output\nz_score"]; 15 --> 32004d23-7c99-4405-a65f-fd861b40c949; style 32004d23-7c99-4405-a65f-fd861b40c949 stroke:#2c3143,stroke-width:4px; 16["Change Case"]; 13 -->|out_file1| 16; 17["Filter"]; 14 -->|out_file1| 17; 18["goseq"]; 16 -->|out_file1| 18; 7 -->|out_file1| 18; a0dd7397-7262-4336-abd6-a915ab6be36a["Output\ngo_genes"]; 18 --> a0dd7397-7262-4336-abd6-a915ab6be36a; style a0dd7397-7262-4336-abd6-a915ab6be36a stroke:#2c3143,stroke-width:4px; 659fec58-4ed5-4aee-9e50-7acce21113cb["Output\ngo_plot"]; 18 --> 659fec58-4ed5-4aee-9e50-7acce21113cb; style 659fec58-4ed5-4aee-9e50-7acce21113cb stroke:#2c3143,stroke-width:4px; c06c58d4-ab5d-49da-b481-baf668c6fc29["Output\ngo_terms"]; 18 --> c06c58d4-ab5d-49da-b481-baf668c6fc29; style c06c58d4-ab5d-49da-b481-baf668c6fc29 stroke:#2c3143,stroke-width:4px; 19["goseq"]; 16 -->|out_file1| 19; 7 -->|out_file1| 19; 9872b017-9b39-4cd3-b232-a305979a782b["Output\nkegg_genes"]; 19 --> 9872b017-9b39-4cd3-b232-a305979a782b; style 9872b017-9b39-4cd3-b232-a305979a782b stroke:#2c3143,stroke-width:4px; 8d0ac5be-ac7d-4f10-85ac-d3461f561a50["Output\nkegg_pathways"]; 19 --> 8d0ac5be-ac7d-4f10-85ac-d3461f561a50; style 8d0ac5be-ac7d-4f10-85ac-d3461f561a50 stroke:#2c3143,stroke-width:4px; 20["Cut"]; 17 -->|out_file1| 20; 21["Filter"]; 17 -->|out_file1| 21; 22["Filter"]; 18 -->|wallenius_tab| 22; ae762394-0e90-4b9a-a7b4-7cffeccc80a7["Output\ngo_underrepresented"]; 22 --> ae762394-0e90-4b9a-a7b4-7cffeccc80a7; style ae762394-0e90-4b9a-a7b4-7cffeccc80a7 stroke:#2c3143,stroke-width:4px; 23["Filter"]; 18 -->|wallenius_tab| 23; b788d5b7-119c-418a-a12b-a97ef7ea5bf2["Output\ngo_overrepresented"]; 23 --> b788d5b7-119c-418a-a12b-a97ef7ea5bf2; style b788d5b7-119c-418a-a12b-a97ef7ea5bf2 stroke:#2c3143,stroke-width:4px; 24["Filter"]; 19 -->|wallenius_tab| 24; 69f80c89-fc7d-4bea-836f-34e68615abcd["Output\nkegg_underrepresented"]; 24 --> 69f80c89-fc7d-4bea-836f-34e68615abcd; style 69f80c89-fc7d-4bea-836f-34e68615abcd stroke:#2c3143,stroke-width:4px; 25["Filter"]; 19 -->|wallenius_tab| 25; 930f1461-0ade-4744-a83d-843108c4b597["Output\nkegg_overrepresented"]; 25 --> 930f1461-0ade-4744-a83d-843108c4b597; style 930f1461-0ade-4744-a83d-843108c4b597 stroke:#2c3143,stroke-width:4px; 26["Pathview"]; 20 -->|out_file1| 26; 3 -->|output| 26; 7cdd4475-6de3-4c02-be8d-d76e788980f6["Output\npathview_plot"]; 26 --> 7cdd4475-6de3-4c02-be8d-d76e788980f6; style 7cdd4475-6de3-4c02-be8d-d76e788980f6 stroke:#2c3143,stroke-width:4px; 27["Join two Datasets"]; 9 -->|counts_out| 27; 21 -->|out_file1| 27; 28["Group"]; 22 -->|out_file1| 28; d1ae921d-2e2b-46d8-95a2-4443f5a1b3b4["Output\ngo_underrepresented_categories"]; 28 --> d1ae921d-2e2b-46d8-95a2-4443f5a1b3b4; style d1ae921d-2e2b-46d8-95a2-4443f5a1b3b4 stroke:#2c3143,stroke-width:4px; 29["Group"]; 23 -->|out_file1| 29; 4d2d01eb-15d2-4863-a522-9462c15eb51c["Output\ngo_overrepresented_categories"]; 29 --> 4d2d01eb-15d2-4863-a522-9462c15eb51c; style 4d2d01eb-15d2-4863-a522-9462c15eb51c stroke:#2c3143,stroke-width:4px; 30["Cut"]; 27 -->|out_file1| 30; 31["heatmap2"]; 30 -->|out_file1| 31; 42cb6b68-4ed6-4b6e-9312-744b9e0c1442["Output\nheatmap_log"]; 31 --> 42cb6b68-4ed6-4b6e-9312-744b9e0c1442; style 42cb6b68-4ed6-4b6e-9312-744b9e0c1442 stroke:#2c3143,stroke-width:4px; 32["heatmap2"]; 30 -->|out_file1| 32; 0ecef5aa-76ed-4fe7-9244-3b32d231e7f3["Output\nheatmap_zscore"]; 32 --> 0ecef5aa-76ed-4fe7-9244-3b32d231e7f3; style 0ecef5aa-76ed-4fe7-9244-3b32d231e7f3 stroke:#2c3143,stroke-width:4px;
QC + Mapping + Counting (single+paired) - Ref Based RNA Seq - Transcriptomics - GTN
Bérénice Batut, Mallory Freeberg, Mo Heydarian, Anika Erxleben, Pavankumar Videm, Clemens Blank, Maria Doyle, Nicola Soranzo, Peter van Heusden, Lucille Delisle
Last updated Jul 5, 2024
Launch in Tutorial Mode
License:
MIT
Tests: ✅
Results: Not yet automated
flowchart TD 0["ℹ️ Input Collection\nsingle fastqs"]; style 0 stroke:#2c3143,stroke-width:4px; 1["ℹ️ Input Collection\npaired fastqs"]; style 1 stroke:#2c3143,stroke-width:4px; 2["ℹ️ Input Dataset\nDrosophila_melanogaster.BDGP6.32.109_UCSC.gtf.gz"]; style 2 stroke:#2c3143,stroke-width:4px; 3["Cutadapt: remove bad quality bp"]; 0 -->|output| 3; 4["Flatten paired collection for FastQC"]; 1 -->|output| 4; 5["Cutadapt"]; 1 -->|output| 5; 6["Get gene length"]; 2 -->|output| 6; 077640cc-edbb-4185-9eb1-d11b522774af["Output\nGene length"]; 6 --> 077640cc-edbb-4185-9eb1-d11b522774af; style 077640cc-edbb-4185-9eb1-d11b522774af stroke:#2c3143,stroke-width:4px; 7["convert gtf to bed12"]; 2 -->|output| 7; 8["STAR: map single reads"]; 2 -->|output| 8; 3 -->|out1| 8; 9["Merge fastqs for FastQC"]; 4 -->|output| 9; 0 -->|output| 9; 10["Merge Cutadapt reports"]; 5 -->|report| 10; 3 -->|report| 10; 11["STAR: map paired reads"]; 2 -->|output| 11; 5 -->|out_pairs| 11; 12["count reads per gene for SR"]; 8 -->|mapped_reads| 12; 2 -->|output| 12; 13["FastQC check read qualities"]; 9 -->|output| 13; 14["Combine cutadapt results"]; 10 -->|output| 14; cab760db-5c9d-4a3c-b768-998bfbac6b57["Output\nmultiqc_cutadapt_html"]; 14 --> cab760db-5c9d-4a3c-b768-998bfbac6b57; style cab760db-5c9d-4a3c-b768-998bfbac6b57 stroke:#2c3143,stroke-width:4px; 15["Merge STAR logs"]; 11 -->|output_log| 15; 8 -->|output_log| 15; 16["Merge STAR counts"]; 8 -->|reads_per_gene| 16; 11 -->|reads_per_gene| 16; 17["count fragments per gene for PE"]; 11 -->|mapped_reads| 17; 2 -->|output| 17; 1527b5d7-1681-4934-9d9e-3a5f86ae0fee["Output\nfeatureCounts_gene_length"]; 17 --> 1527b5d7-1681-4934-9d9e-3a5f86ae0fee; style 1527b5d7-1681-4934-9d9e-3a5f86ae0fee stroke:#2c3143,stroke-width:4px; 18["Merge STAR BAM"]; 11 -->|mapped_reads| 18; 8 -->|mapped_reads| 18; 802017f4-fb1a-4243-b50d-2ed46f746f11["Output\nSTAR_BAM"]; 18 --> 802017f4-fb1a-4243-b50d-2ed46f746f11; style 802017f4-fb1a-4243-b50d-2ed46f746f11 stroke:#2c3143,stroke-width:4px; 19["merge coverage unique strand 1"]; 8 -->|signal_unique_str1| 19; 11 -->|signal_unique_str1| 19; 20["merge coverage unique strand 2"]; 8 -->|signal_unique_str2| 20; 11 -->|signal_unique_str2| 20; 21["Combine FastQC results"]; 13 -->|text_file| 21; 8d0ce9ee-e4e4-4c0c-8261-420ce756ecfd["Output\nmultiqc_fastqc_html"]; 21 --> 8d0ce9ee-e4e4-4c0c-8261-420ce756ecfd; style 8d0ce9ee-e4e4-4c0c-8261-420ce756ecfd stroke:#2c3143,stroke-width:4px; 22["Combine STAR Results"]; 15 -->|output| 22; 204e3f6c-6f54-46f0-b07c-1f31113265e7["Output\nmultiqc_star_html"]; 22 --> 204e3f6c-6f54-46f0-b07c-1f31113265e7; style 204e3f6c-6f54-46f0-b07c-1f31113265e7 stroke:#2c3143,stroke-width:4px; 23["Remove statistics from STAR counts"]; 16 -->|output| 23; 24["Determine library strandness with STAR"]; 16 -->|output| 24; fe7b84dd-4466-4fe7-94a8-408f4ac7ed1a["Output\nmultiqc_star_counts_html"]; 24 --> fe7b84dd-4466-4fe7-94a8-408f4ac7ed1a; style fe7b84dd-4466-4fe7-94a8-408f4ac7ed1a stroke:#2c3143,stroke-width:4px; 25["merge counts from featureCounts"]; 12 -->|output_short| 25; 17 -->|output_short| 25; c82388f8-cb09-4fdf-8a0e-03cdad579f37["Output\nfeatureCounts"]; 25 --> c82388f8-cb09-4fdf-8a0e-03cdad579f37; style c82388f8-cb09-4fdf-8a0e-03cdad579f37 stroke:#2c3143,stroke-width:4px; 26["merge featureCounts summary"]; 12 -->|output_summary| 26; 17 -->|output_summary| 26; 27["Determine library strandness with Infer Experiment"]; 18 -->|output| 27; 7 -->|bed_file| 27; 940ec3ec-dd2e-4d50-bbc4-756945eb16b2["Output\ninferexperiment"]; 27 --> 940ec3ec-dd2e-4d50-bbc4-756945eb16b2; style 940ec3ec-dd2e-4d50-bbc4-756945eb16b2 stroke:#2c3143,stroke-width:4px; 28["Read Distribution"]; 18 -->|output| 28; 7 -->|bed_file| 28; 29["Compute read distribution statistics"]; 18 -->|output| 29; 7 -->|bed_file| 29; 30["sample BAM"]; 18 -->|output| 30; 31["Get reads number per chromosome"]; 18 -->|output| 31; 32["Remove duplicates"]; 18 -->|output| 32; 33["Determine library strandness with STAR coverage"]; 19 -->|output| 33; 20 -->|output| 33; 2 -->|output| 33; 89e1b053-03c2-467a-95a0-d2dc404670ec["Output\npgt"]; 33 --> 89e1b053-03c2-467a-95a0-d2dc404670ec; style 89e1b053-03c2-467a-95a0-d2dc404670ec stroke:#2c3143,stroke-width:4px; 34["Select unstranded counts"]; 23 -->|outfile| 34; bce755be-ac3b-4346-9ac5-1128a287bf00["Output\ncounts_from_star"]; 34 --> bce755be-ac3b-4346-9ac5-1128a287bf00; style bce755be-ac3b-4346-9ac5-1128a287bf00 stroke:#2c3143,stroke-width:4px; 35["Sort counts to get gene with highest count on feature Counts"]; 25 -->|output| 35; 6aeb4dd1-445f-4c66-b1ce-4bb8faac53db["Output\nfeatureCounts_sorted"]; 35 --> 6aeb4dd1-445f-4c66-b1ce-4bb8faac53db; style 6aeb4dd1-445f-4c66-b1ce-4bb8faac53db stroke:#2c3143,stroke-width:4px; 36["Combine read asignments statistics"]; 26 -->|output| 36; fc72242a-f23c-4ceb-9a8b-5280343ea5d6["Output\nmultiqc_featureCounts_html"]; 36 --> fc72242a-f23c-4ceb-9a8b-5280343ea5d6; style fc72242a-f23c-4ceb-9a8b-5280343ea5d6 stroke:#2c3143,stroke-width:4px; 37["Combine read distribution on known features"]; 29 -->|output| 37; 07dca732-0ac7-432e-9e61-2b77f921a23b["Output\nmultiqc_read_distrib"]; 37 --> 07dca732-0ac7-432e-9e61-2b77f921a23b; style 07dca732-0ac7-432e-9e61-2b77f921a23b stroke:#2c3143,stroke-width:4px; 38["Get gene body coverage"]; 30 -->|outputsam| 38; 7 -->|bed_file| 38; 39["Combine results on reads per chromosome"]; 31 -->|output| 39; 7bfa8ae7-8ffd-46a1-a56e-815ed2c9f1cf["Output\nmultiqc_reads_per_chrom"]; 39 --> 7bfa8ae7-8ffd-46a1-a56e-815ed2c9f1cf; style 7bfa8ae7-8ffd-46a1-a56e-815ed2c9f1cf stroke:#2c3143,stroke-width:4px; 40["Combine results of duplicate reads"]; 32 -->|metrics_file| 40; 66553d0f-e851-458b-82c2-f9b30e394bac["Output\nmultiqc_dup"]; 40 --> 66553d0f-e851-458b-82c2-f9b30e394bac; style 66553d0f-e851-458b-82c2-f9b30e394bac stroke:#2c3143,stroke-width:4px; 41["Sort counts to get gene with highest count on STAR"]; 34 -->|out_file1| 41; 383df008-0ccb-4d67-98dd-33fa5e2db81e["Output\ncounts_from_star_sorted"]; 41 --> 383df008-0ccb-4d67-98dd-33fa5e2db81e; style 383df008-0ccb-4d67-98dd-33fa5e2db81e stroke:#2c3143,stroke-width:4px; 42["Combine gene body coverage"]; 38 -->|outputtxt| 42; 8544ea5c-faf2-44c9-85d6-40658fc9b9eb["Output\nmultiqc_gene_body_cov"]; 42 --> 8544ea5c-faf2-44c9-85d6-40658fc9b9eb; style 8544ea5c-faf2-44c9-85d6-40658fc9b9eb stroke:#2c3143,stroke-width:4px;
QC + Mapping + Counting - Ref Based RNA Seq - Transcriptomics - GTN - subworkflows
Bérénice Batut, Mallory Freeberg, Mo Heydarian, Anika Erxleben, Pavankumar Videm, Clemens Blank, Maria Doyle, Nicola Soranzo, Peter van Heusden, Lucille Delisle
Last updated Jul 5, 2024
Launch in Tutorial Mode
License:
MIT
Tests: ✅
Results: Not yet automated
flowchart TD 0["ℹ️ Input Collection\nPaired list collection with PE fastqs"]; style 0 stroke:#2c3143,stroke-width:4px; 1["ℹ️ Input Dataset\nDrosophila_melanogaster.BDGP6.32.109_UCSC.gtf.gz"]; style 1 stroke:#2c3143,stroke-width:4px; 2["🛠️ Subworkflow\nFastQC"]; style 2 fill:#edd,stroke:#900,stroke-width:4px; 0 -->|output| 2; 5f7652f1-e225-4ad1-8dbd-4d21544edb89["Output\nmultiqc_fastqc_html"]; 2 --> 5f7652f1-e225-4ad1-8dbd-4d21544edb89; style 5f7652f1-e225-4ad1-8dbd-4d21544edb89 stroke:#2c3143,stroke-width:4px; 3["🛠️ Subworkflow\ncutadapt"]; style 3 fill:#edd,stroke:#900,stroke-width:4px; 0 -->|output| 3; 41c7fbb5-655b-457c-8ba7-0e2eeab3d7ee["Output\nmultiqc_cutadapt_html"]; 3 --> 41c7fbb5-655b-457c-8ba7-0e2eeab3d7ee; style 41c7fbb5-655b-457c-8ba7-0e2eeab3d7ee stroke:#2c3143,stroke-width:4px; 4["🛠️ Subworkflow\nSTAR + multiQC"]; style 4 fill:#edd,stroke:#900,stroke-width:4px; 1 -->|output| 4; 3 -->|out_pairs| 4; 8aa5ef30-3f09-4a93-944d-0d89101c056a["Output\nmultiqc_star_html"]; 4 --> 8aa5ef30-3f09-4a93-944d-0d89101c056a; style 8aa5ef30-3f09-4a93-944d-0d89101c056a stroke:#2c3143,stroke-width:4px; 11af5c57-91b4-496c-9b0c-b02904963f81["Output\nSTAR_BAM"]; 4 --> 11af5c57-91b4-496c-9b0c-b02904963f81; style 11af5c57-91b4-496c-9b0c-b02904963f81 stroke:#2c3143,stroke-width:4px; 5["🛠️ Subworkflow\nmore QC"]; style 5 fill:#edd,stroke:#900,stroke-width:4px; 1 -->|output| 5; 4 -->|STAR_BAM| 5; f2eed352-ca21-4d65-8810-f5a1d3c282b4["Output\nmultiqc_read_distrib_html"]; 5 --> f2eed352-ca21-4d65-8810-f5a1d3c282b4; style f2eed352-ca21-4d65-8810-f5a1d3c282b4 stroke:#2c3143,stroke-width:4px; b306cb12-a275-4c6d-b609-47fdc208864b["Output\nmultiqc_reads_per_chrom_html"]; 5 --> b306cb12-a275-4c6d-b609-47fdc208864b; style b306cb12-a275-4c6d-b609-47fdc208864b stroke:#2c3143,stroke-width:4px; 3375d63c-cdc3-4fbb-8a55-6f504c934918["Output\nmultiqc_gene_body_cov_html"]; 5 --> 3375d63c-cdc3-4fbb-8a55-6f504c934918; style 3375d63c-cdc3-4fbb-8a55-6f504c934918 stroke:#2c3143,stroke-width:4px; 3ea82568-5698-49a7-88fe-91381070aac2["Output\nmultiqc_dup_html"]; 5 --> 3ea82568-5698-49a7-88fe-91381070aac2; style 3ea82568-5698-49a7-88fe-91381070aac2 stroke:#2c3143,stroke-width:4px; 6["🛠️ Subworkflow\nDetermine strandness"]; style 6 fill:#edd,stroke:#900,stroke-width:4px; 4 -->|STAR_BAM| 6; 1 -->|output| 6; 4 -->|signal_unique_str1| 6; 4 -->|signal_unique_str2| 6; 4 -->|reads_per_gene| 6; fb810859-f2d0-43f8-ac7c-5c714c5c6805["Output\ninferexperiment"]; 6 --> fb810859-f2d0-43f8-ac7c-5c714c5c6805; style fb810859-f2d0-43f8-ac7c-5c714c5c6805 stroke:#2c3143,stroke-width:4px; 9727824a-3eb2-4430-92d1-b3c40c3041d1["Output\npgt"]; 6 --> 9727824a-3eb2-4430-92d1-b3c40c3041d1; style 9727824a-3eb2-4430-92d1-b3c40c3041d1 stroke:#2c3143,stroke-width:4px; 105313d8-e31a-405d-8fcd-cc5fd93275e2["Output\nmultiqc_star_counts_html"]; 6 --> 105313d8-e31a-405d-8fcd-cc5fd93275e2; style 105313d8-e31a-405d-8fcd-cc5fd93275e2 stroke:#2c3143,stroke-width:4px; 7["🛠️ Subworkflow\ncount STAR"]; style 7 fill:#edd,stroke:#900,stroke-width:4px; 1 -->|output| 7; 4 -->|reads_per_gene| 7; 5fee8aff-4023-43f1-a653-f5af5357d798["Output\ncounts_from_star"]; 7 --> 5fee8aff-4023-43f1-a653-f5af5357d798; style 5fee8aff-4023-43f1-a653-f5af5357d798 stroke:#2c3143,stroke-width:4px; bd3388e6-5b45-4fdc-9780-3efd1c34ebf8["Output\ncounts_from_star_sorted"]; 7 --> bd3388e6-5b45-4fdc-9780-3efd1c34ebf8; style bd3388e6-5b45-4fdc-9780-3efd1c34ebf8 stroke:#2c3143,stroke-width:4px; 7b7c698b-4808-4b45-adf1-686f8d273d18["Output\nGene length"]; 7 --> 7b7c698b-4808-4b45-adf1-686f8d273d18; style 7b7c698b-4808-4b45-adf1-686f8d273d18 stroke:#2c3143,stroke-width:4px; 8["🛠️ Subworkflow\ncount featureCount"]; style 8 fill:#edd,stroke:#900,stroke-width:4px; 1 -->|output| 8; 4 -->|STAR_BAM| 8; f0de4714-4df8-4506-90d9-384537ad663e["Output\nfeatureCounts_sorted"]; 8 --> f0de4714-4df8-4506-90d9-384537ad663e; style f0de4714-4df8-4506-90d9-384537ad663e stroke:#2c3143,stroke-width:4px; 8b9d6c76-6e82-4691-b8bc-9996d6ae1594["Output\nfeatureCounts_gene_length"]; 8 --> 8b9d6c76-6e82-4691-b8bc-9996d6ae1594; style 8b9d6c76-6e82-4691-b8bc-9996d6ae1594 stroke:#2c3143,stroke-width:4px; 152ba01e-d4f2-4227-8812-87648a1c19ea["Output\nmultiqc_featureCounts_html"]; 8 --> 152ba01e-d4f2-4227-8812-87648a1c19ea; style 152ba01e-d4f2-4227-8812-87648a1c19ea stroke:#2c3143,stroke-width:4px; 46c7a2e8-7819-4715-a028-7ad1de9ed605["Output\nfeatureCounts"]; 8 --> 46c7a2e8-7819-4715-a028-7ad1de9ed605; style 46c7a2e8-7819-4715-a028-7ad1de9ed605 stroke:#2c3143,stroke-width:4px;
Importing into Galaxy
Below are the instructions for importing these workflows directly into your Galaxy server of choice to start using them!Hands-on: Importing a workflow
- Click on Workflow on the top menu bar of Galaxy. You will see a list of all your workflows.
- Click on galaxy-upload Import at the top-right of the screen
- Provide your workflow
- Option 1: Paste the URL of the workflow into the box labelled “Archived Workflow URL”
- Option 2: Upload the workflow file in the box labelled “Archived Workflow File”
- Click the Import workflow button
Below is a short video demonstrating how to import a workflow from GitHub using this procedure: