CS3_Filter, Plot and Explore Single-cell RNA-seq Data
single-cell-scrna-case_basic-pipeline/cs3-filter--plot-and-explore-single-cell-rna-seq-data
Launch in Tutorial Mode
question
galaxy-download Download
galaxy-download Download
flowchart TD 0["ℹ️ Input Dataset\nMito-counted AnnData"]; style 0 stroke:#2c3143,stroke-width:4px; 1["Inspect AnnData"]; 0 -->|output| 1; 2["Scanpy FilterCells"]; 0 -->|output| 2; 08175d7f-f4f4-413c-ad86-f59587ff692e["Output\nGenes-filtered Object"]; 2 --> 08175d7f-f4f4-413c-ad86-f59587ff692e; style 08175d7f-f4f4-413c-ad86-f59587ff692e stroke:#2c3143,stroke-width:4px; 3["Plot"]; 0 -->|output| 3; bfc499ee-630a-498b-9be6-696d9bb78837["Output\nScatter - genes x UMIs"]; 3 --> bfc499ee-630a-498b-9be6-696d9bb78837; style bfc499ee-630a-498b-9be6-696d9bb78837 stroke:#2c3143,stroke-width:4px; 4["Plot"]; 0 -->|output| 4; f2c78ef3-7d31-4930-954c-0133cce27a41["Output\nScatter - mito x genes"]; 4 --> f2c78ef3-7d31-4930-954c-0133cce27a41; style f2c78ef3-7d31-4930-954c-0133cce27a41 stroke:#2c3143,stroke-width:4px; 5["Plot"]; 0 -->|output| 5; 348818e6-9def-41fd-a390-6f8525c57cd8["Output\nViolin - genotype - log"]; 5 --> 348818e6-9def-41fd-a390-6f8525c57cd8; style 348818e6-9def-41fd-a390-6f8525c57cd8 stroke:#2c3143,stroke-width:4px; 6["Plot"]; 0 -->|output| 6; 844f5e7c-78c8-4f28-8e15-cea35ada8fef["Output\nViolin - batch - log"]; 6 --> 844f5e7c-78c8-4f28-8e15-cea35ada8fef; style 844f5e7c-78c8-4f28-8e15-cea35ada8fef stroke:#2c3143,stroke-width:4px; 7["Inspect AnnData"]; 0 -->|output| 7; 8["Plot"]; 0 -->|output| 8; 3b1232c5-d16a-434d-806e-79fd77f7c05f["Output\nScatter - mito x UMIs"]; 8 --> 3b1232c5-d16a-434d-806e-79fd77f7c05f; style 3b1232c5-d16a-434d-806e-79fd77f7c05f stroke:#2c3143,stroke-width:4px; 9["Inspect AnnData"]; 0 -->|output| 9; 10["Plot"]; 0 -->|output| 10; a639cdc0-da40-4df9-8348-23117528b24a["Output\nViolin - sex - log"]; 10 --> a639cdc0-da40-4df9-8348-23117528b24a; style a639cdc0-da40-4df9-8348-23117528b24a stroke:#2c3143,stroke-width:4px; 11["Plot"]; 2 -->|output_h5ad| 11; 69bf3e42-63e2-4b5b-9d63-5aac9d6b5691["Output\nViolin - Filterbygenes"]; 11 --> 69bf3e42-63e2-4b5b-9d63-5aac9d6b5691; style 69bf3e42-63e2-4b5b-9d63-5aac9d6b5691 stroke:#2c3143,stroke-width:4px; 12["Scanpy FilterCells"]; 2 -->|output_h5ad| 12; f378cb4e-0a77-49d9-b92a-752dbea4b09a["Output\nCounts-filtered Object"]; 12 --> f378cb4e-0a77-49d9-b92a-752dbea4b09a; style f378cb4e-0a77-49d9-b92a-752dbea4b09a stroke:#2c3143,stroke-width:4px; 13["Inspect AnnData"]; 2 -->|output_h5ad| 13; f9e862db-eb22-4124-8fe0-0fdcfcfb8393["Output\nGeneral - Filterbygenes"]; 13 --> f9e862db-eb22-4124-8fe0-0fdcfcfb8393; style f9e862db-eb22-4124-8fe0-0fdcfcfb8393 stroke:#2c3143,stroke-width:4px; 14["Inspect AnnData"]; 12 -->|output_h5ad| 14; 794f72b5-c2c3-46a0-ac15-b9f1e94941d2["Output\nGeneral - Filterbycounts"]; 14 --> 794f72b5-c2c3-46a0-ac15-b9f1e94941d2; style 794f72b5-c2c3-46a0-ac15-b9f1e94941d2 stroke:#2c3143,stroke-width:4px; 15["Scanpy FilterCells"]; 12 -->|output_h5ad| 15; b915da66-6435-4871-baa0-3e494ba73c96["Output\nMito-filtered Object"]; 15 --> b915da66-6435-4871-baa0-3e494ba73c96; style b915da66-6435-4871-baa0-3e494ba73c96 stroke:#2c3143,stroke-width:4px; 16["Plot"]; 12 -->|output_h5ad| 16; 3aef86d7-d34d-4b24-bc97-bf8c97d8d2fa["Output\nViolin - Filterbycounts"]; 16 --> 3aef86d7-d34d-4b24-bc97-bf8c97d8d2fa; style 3aef86d7-d34d-4b24-bc97-bf8c97d8d2fa stroke:#2c3143,stroke-width:4px; 17["Inspect AnnData"]; 15 -->|output_h5ad| 17; cd94a4c6-5665-4bdf-88ea-4f4d41efa893["Output\nGeneral - Filterbymito"]; 17 --> cd94a4c6-5665-4bdf-88ea-4f4d41efa893; style cd94a4c6-5665-4bdf-88ea-4f4d41efa893 stroke:#2c3143,stroke-width:4px; 18["Scanpy FilterGenes"]; 15 -->|output_h5ad| 18; ee63ef0a-98ed-45cb-b144-1154f84ae452["Output\nFiltered Object"]; 18 --> ee63ef0a-98ed-45cb-b144-1154f84ae452; style ee63ef0a-98ed-45cb-b144-1154f84ae452 stroke:#2c3143,stroke-width:4px; 19["Plot"]; 15 -->|output_h5ad| 19; 7e48a14f-08fd-45ab-b613-606bf64dcf9d["Output\nViolin - Filterbymito"]; 19 --> 7e48a14f-08fd-45ab-b613-606bf64dcf9d; style 7e48a14f-08fd-45ab-b613-606bf64dcf9d stroke:#2c3143,stroke-width:4px; 20["Inspect AnnData"]; 18 -->|output_h5ad| 20; d59efa9b-d049-4f0e-8bd8-8ae982a45d0a["Output\nGeneral - Filtered object"]; 20 --> d59efa9b-d049-4f0e-8bd8-8ae982a45d0a; style d59efa9b-d049-4f0e-8bd8-8ae982a45d0a stroke:#2c3143,stroke-width:4px; 21["Scanpy NormaliseData"]; 18 -->|output_h5ad| 21; 22["Scanpy FindVariableGenes"]; 21 -->|output_h5ad| 22; 23["Scanpy ScaleData"]; 22 -->|output_h5ad| 23; 24["Scanpy RunPCA"]; 23 -->|output_h5ad| 24; 25["Plot"]; 24 -->|output_h5ad| 25; 993dea99-990f-460a-beb9-46e5c97ee898["Output\nPCA Variance"]; 25 --> 993dea99-990f-460a-beb9-46e5c97ee898; style 993dea99-990f-460a-beb9-46e5c97ee898 stroke:#2c3143,stroke-width:4px; 26["Scanpy ComputeGraph"]; 24 -->|output_h5ad| 26; 27["Scanpy RunTSNE"]; 26 -->|output_h5ad| 27; 28["Scanpy RunUMAP"]; 27 -->|output_h5ad| 28; 29["Scanpy FindCluster"]; 28 -->|output_h5ad| 29; 30["Scanpy FindMarkers"]; 29 -->|output_h5ad| 30; 308b4961-4d50-442b-9bca-bbb1992426ba["Output\nMarkers - cluster"]; 30 --> 308b4961-4d50-442b-9bca-bbb1992426ba; style 308b4961-4d50-442b-9bca-bbb1992426ba stroke:#2c3143,stroke-width:4px; 035bbbce-fb57-48c8-83d5-2b0cd0376541["Output\nFinal object"]; 30 --> 035bbbce-fb57-48c8-83d5-2b0cd0376541; style 035bbbce-fb57-48c8-83d5-2b0cd0376541 stroke:#2c3143,stroke-width:4px; 31["Scanpy FindMarkers"]; 29 -->|output_h5ad| 31; 1705e219-192a-4f52-9b26-64fcbcd303ea["Output\nMarkers - genotype"]; 31 --> 1705e219-192a-4f52-9b26-64fcbcd303ea; style 1705e219-192a-4f52-9b26-64fcbcd303ea stroke:#2c3143,stroke-width:4px; 32["Scanpy PlotEmbed"]; 30 -->|output_h5ad| 32; 33["Scanpy PlotEmbed"]; 30 -->|output_h5ad| 33; 34["Manipulate AnnData"]; 30 -->|output_h5ad| 34; 35["Scanpy PlotEmbed"]; 30 -->|output_h5ad| 35; 36["Inspect AnnData"]; 30 -->|output_h5ad| 36; 37["AnnData Operations"]; 34 -->|anndata| 37; 30 -->|output_h5ad| 37; 38["Join two Datasets"]; 30 -->|output_tsv| 38; 36 -->|var| 38; 39["Join two Datasets"]; 31 -->|output_tsv| 39; 36 -->|var| 39; 40["AnnData Operations"]; 37 -->|output_h5ad| 40; a6d48df0-403f-4efc-a75f-9504a960884e["Output\nFinal cell annotated object"]; 40 --> a6d48df0-403f-4efc-a75f-9504a960884e; style a6d48df0-403f-4efc-a75f-9504a960884e stroke:#2c3143,stroke-width:4px; 41["Cut"]; 38 -->|out_file1| 41; 0ee7f9b6-b065-4e26-93df-6e6e2fe458a9["Output\nMarkers - cluster - named"]; 41 --> 0ee7f9b6-b065-4e26-93df-6e6e2fe458a9; style 0ee7f9b6-b065-4e26-93df-6e6e2fe458a9 stroke:#2c3143,stroke-width:4px; 42["Cut"]; 39 -->|out_file1| 42; fdb88faa-9b76-4edb-b89b-427c098a473e["Output\nMarkers - genotype - named"]; 42 --> fdb88faa-9b76-4edb-b89b-427c098a473e; style fdb88faa-9b76-4edb-b89b-427c098a473e stroke:#2c3143,stroke-width:4px; 43["Scanpy PlotEmbed"]; 40 -->|output_h5ad| 43;
Inputs
Input | Label |
---|---|
Input dataset | Mito-counted AnnData |
Outputs
From | Output | Label |
---|---|---|
toolshed.g2.bx.psu.edu/repos/iuc/anndata_inspect/anndata_inspect/0.7.5+galaxy1 | Inspect AnnData | |
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_filter_cells/scanpy_filter_cells/1.8.1+galaxy0 | Scanpy FilterCells | |
toolshed.g2.bx.psu.edu/repos/iuc/scanpy_plot/scanpy_plot/1.7.1+galaxy1 | Plot | |
toolshed.g2.bx.psu.edu/repos/iuc/scanpy_plot/scanpy_plot/1.7.1+galaxy1 | Plot | |
toolshed.g2.bx.psu.edu/repos/iuc/scanpy_plot/scanpy_plot/1.7.1+galaxy1 | Plot | |
toolshed.g2.bx.psu.edu/repos/iuc/scanpy_plot/scanpy_plot/1.7.1+galaxy1 | Plot | |
toolshed.g2.bx.psu.edu/repos/iuc/anndata_inspect/anndata_inspect/0.7.5+galaxy1 | Inspect AnnData | |
toolshed.g2.bx.psu.edu/repos/iuc/scanpy_plot/scanpy_plot/1.7.1+galaxy1 | Plot | |
toolshed.g2.bx.psu.edu/repos/iuc/anndata_inspect/anndata_inspect/0.7.5+galaxy1 | Inspect AnnData | |
toolshed.g2.bx.psu.edu/repos/iuc/scanpy_plot/scanpy_plot/1.7.1+galaxy1 | Plot | |
toolshed.g2.bx.psu.edu/repos/iuc/scanpy_plot/scanpy_plot/1.7.1+galaxy1 | Plot | |
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_filter_cells/scanpy_filter_cells/1.8.1+galaxy0 | Scanpy FilterCells | |
toolshed.g2.bx.psu.edu/repos/iuc/anndata_inspect/anndata_inspect/0.7.5+galaxy1 | Inspect AnnData | |
toolshed.g2.bx.psu.edu/repos/iuc/anndata_inspect/anndata_inspect/0.7.5+galaxy1 | Inspect AnnData | |
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_filter_cells/scanpy_filter_cells/1.8.1+galaxy0 | Scanpy FilterCells | |
toolshed.g2.bx.psu.edu/repos/iuc/scanpy_plot/scanpy_plot/1.7.1+galaxy1 | Plot | |
toolshed.g2.bx.psu.edu/repos/iuc/anndata_inspect/anndata_inspect/0.7.5+galaxy1 | Inspect AnnData | |
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_filter_genes/scanpy_filter_genes/1.8.1+galaxy0 | Scanpy FilterGenes | |
toolshed.g2.bx.psu.edu/repos/iuc/scanpy_plot/scanpy_plot/1.7.1+galaxy1 | Plot | |
toolshed.g2.bx.psu.edu/repos/iuc/anndata_inspect/anndata_inspect/0.7.5+galaxy1 | Inspect AnnData | |
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_normalise_data/scanpy_normalise_data/1.8.1+galaxy0 | Scanpy NormaliseData | |
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_find_variable_genes/scanpy_find_variable_genes/1.8.1+galaxy0 | Scanpy FindVariableGenes | |
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_scale_data/scanpy_scale_data/1.8.1+galaxy0 | Scanpy ScaleData | |
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_run_pca/scanpy_run_pca/1.8.1+galaxy0 | Scanpy RunPCA | |
toolshed.g2.bx.psu.edu/repos/iuc/scanpy_plot/scanpy_plot/1.7.1+galaxy1 | Plot | |
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_compute_graph/scanpy_compute_graph/1.8.1+galaxy1 | Scanpy ComputeGraph | |
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_run_tsne/scanpy_run_tsne/1.8.1+galaxy1 | Scanpy RunTSNE | |
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_run_umap/scanpy_run_umap/1.8.1+galaxy0 | Scanpy RunUMAP | |
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_find_cluster/scanpy_find_cluster/1.8.1+galaxy0 | Scanpy FindCluster | |
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_find_markers/scanpy_find_markers/1.8.1+galaxy0 | Scanpy FindMarkers | |
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_find_markers/scanpy_find_markers/1.8.1+galaxy0 | Scanpy FindMarkers | |
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_plot_embed/scanpy_plot_embed/1.8.1+galaxy0 | Scanpy PlotEmbed | |
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_plot_embed/scanpy_plot_embed/1.8.1+galaxy0 | Scanpy PlotEmbed | |
toolshed.g2.bx.psu.edu/repos/iuc/anndata_manipulate/anndata_manipulate/0.7.5+galaxy1 | Manipulate AnnData | |
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_plot_embed/scanpy_plot_embed/1.8.1+galaxy0 | Scanpy PlotEmbed | |
toolshed.g2.bx.psu.edu/repos/iuc/anndata_inspect/anndata_inspect/0.7.5+galaxy1 | Inspect AnnData | |
toolshed.g2.bx.psu.edu/repos/ebi-gxa/anndata_ops/anndata_ops/1.8.1+galaxy0 | AnnData Operations | |
join1 | Join two Datasets | |
join1 | Join two Datasets | |
toolshed.g2.bx.psu.edu/repos/ebi-gxa/anndata_ops/anndata_ops/1.8.1+galaxy0 | AnnData Operations | |
Cut1 | Cut | |
Cut1 | Cut | |
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_plot_embed/scanpy_plot_embed/1.8.1+galaxy0 | Scanpy PlotEmbed |
Tools
To use these workflows in Galaxy you can either click the links to download the workflows, or you can right-click and copy the link to the workflow which can be used in the Galaxy form to import workflows.
Importing into Galaxy
Below are the instructions for importing these workflows directly into your Galaxy server of choice to start using them!Hands-on: Importing a workflow
- Click on Workflow on the top menu bar of Galaxy. You will see a list of all your workflows.
- Click on galaxy-upload Import at the top-right of the screen
- Provide your workflow
- Option 1: Paste the URL of the workflow into the box labelled “Archived Workflow URL”
- Option 2: Upload the workflow file in the box labelled “Archived Workflow File”
- Click the Import workflow button
Below is a short video demonstrating how to import a workflow from GitHub using this procedure:
Version History
Version | Commit | Time | Comments |
---|---|---|---|
1 | 327fd2b84 | 2022-11-12 17:14:25 | Making a single cell topics |
For Admins
Installing the workflow tools
wget https://training.galaxyproject.org/training-material/topics/single-cell/tutorials/scrna-case_basic-pipeline/workflows/CS3_Filter,_Plot_and_Explore_Single-cell_RNA-seq_Data.ga -O workflow.ga workflow-to-tools -w workflow.ga -o tools.yaml shed-tools install -g GALAXY -a API_KEY -t tools.yaml workflow-install -g GALAXY -a API_KEY -w workflow.ga --publish-workflows