CS3_Filter, Plot and Explore Single-cell RNA-seq Data

single-cell-scrna-case_basic-pipeline/cs3-filter--plot-and-explore-single-cell-rna-seq-data

Author(s)

version Version
1
last_modification Last updated
Nov 18, 2022
license License
None Specified, defaults to CC-BY-4.0
galaxy-tags Tags
name:transcriptomics
name:training
name:singlecell

Features

Tutorial
hands_on Filter, plot and explore single-cell RNA-seq data with Scanpy
workflow Other workflows associated with this material
Workflow Testing
Tests: ❌
Results: Not yet automated
FAIRness purl PURL
https://gxy.io/GTN:W00196
RO-Crate logo with flask Download Workflow RO-Crate Workflowhub cloud with gears logo View on WorkflowHub
Launch in Tutorial Mode question
galaxy-download Download
flowchart TD
  0["ℹ️ Input Dataset\nMito-counted AnnData"];
  style 0 stroke:#2c3143,stroke-width:4px;
  1["Inspect AnnData"];
  0 -->|output| 1;
  2["Scanpy FilterCells"];
  0 -->|output| 2;
  08175d7f-f4f4-413c-ad86-f59587ff692e["Output\nGenes-filtered Object"];
  2 --> 08175d7f-f4f4-413c-ad86-f59587ff692e;
  style 08175d7f-f4f4-413c-ad86-f59587ff692e stroke:#2c3143,stroke-width:4px;
  3["Plot"];
  0 -->|output| 3;
  bfc499ee-630a-498b-9be6-696d9bb78837["Output\nScatter - genes x UMIs"];
  3 --> bfc499ee-630a-498b-9be6-696d9bb78837;
  style bfc499ee-630a-498b-9be6-696d9bb78837 stroke:#2c3143,stroke-width:4px;
  4["Plot"];
  0 -->|output| 4;
  f2c78ef3-7d31-4930-954c-0133cce27a41["Output\nScatter - mito x genes"];
  4 --> f2c78ef3-7d31-4930-954c-0133cce27a41;
  style f2c78ef3-7d31-4930-954c-0133cce27a41 stroke:#2c3143,stroke-width:4px;
  5["Plot"];
  0 -->|output| 5;
  348818e6-9def-41fd-a390-6f8525c57cd8["Output\nViolin - genotype - log"];
  5 --> 348818e6-9def-41fd-a390-6f8525c57cd8;
  style 348818e6-9def-41fd-a390-6f8525c57cd8 stroke:#2c3143,stroke-width:4px;
  6["Plot"];
  0 -->|output| 6;
  844f5e7c-78c8-4f28-8e15-cea35ada8fef["Output\nViolin - batch - log"];
  6 --> 844f5e7c-78c8-4f28-8e15-cea35ada8fef;
  style 844f5e7c-78c8-4f28-8e15-cea35ada8fef stroke:#2c3143,stroke-width:4px;
  7["Inspect AnnData"];
  0 -->|output| 7;
  8["Plot"];
  0 -->|output| 8;
  3b1232c5-d16a-434d-806e-79fd77f7c05f["Output\nScatter - mito x UMIs"];
  8 --> 3b1232c5-d16a-434d-806e-79fd77f7c05f;
  style 3b1232c5-d16a-434d-806e-79fd77f7c05f stroke:#2c3143,stroke-width:4px;
  9["Inspect AnnData"];
  0 -->|output| 9;
  10["Plot"];
  0 -->|output| 10;
  a639cdc0-da40-4df9-8348-23117528b24a["Output\nViolin - sex - log"];
  10 --> a639cdc0-da40-4df9-8348-23117528b24a;
  style a639cdc0-da40-4df9-8348-23117528b24a stroke:#2c3143,stroke-width:4px;
  11["Plot"];
  2 -->|output_h5ad| 11;
  69bf3e42-63e2-4b5b-9d63-5aac9d6b5691["Output\nViolin - Filterbygenes"];
  11 --> 69bf3e42-63e2-4b5b-9d63-5aac9d6b5691;
  style 69bf3e42-63e2-4b5b-9d63-5aac9d6b5691 stroke:#2c3143,stroke-width:4px;
  12["Scanpy FilterCells"];
  2 -->|output_h5ad| 12;
  f378cb4e-0a77-49d9-b92a-752dbea4b09a["Output\nCounts-filtered Object"];
  12 --> f378cb4e-0a77-49d9-b92a-752dbea4b09a;
  style f378cb4e-0a77-49d9-b92a-752dbea4b09a stroke:#2c3143,stroke-width:4px;
  13["Inspect AnnData"];
  2 -->|output_h5ad| 13;
  f9e862db-eb22-4124-8fe0-0fdcfcfb8393["Output\nGeneral - Filterbygenes"];
  13 --> f9e862db-eb22-4124-8fe0-0fdcfcfb8393;
  style f9e862db-eb22-4124-8fe0-0fdcfcfb8393 stroke:#2c3143,stroke-width:4px;
  14["Inspect AnnData"];
  12 -->|output_h5ad| 14;
  794f72b5-c2c3-46a0-ac15-b9f1e94941d2["Output\nGeneral - Filterbycounts"];
  14 --> 794f72b5-c2c3-46a0-ac15-b9f1e94941d2;
  style 794f72b5-c2c3-46a0-ac15-b9f1e94941d2 stroke:#2c3143,stroke-width:4px;
  15["Scanpy FilterCells"];
  12 -->|output_h5ad| 15;
  b915da66-6435-4871-baa0-3e494ba73c96["Output\nMito-filtered Object"];
  15 --> b915da66-6435-4871-baa0-3e494ba73c96;
  style b915da66-6435-4871-baa0-3e494ba73c96 stroke:#2c3143,stroke-width:4px;
  16["Plot"];
  12 -->|output_h5ad| 16;
  3aef86d7-d34d-4b24-bc97-bf8c97d8d2fa["Output\nViolin - Filterbycounts"];
  16 --> 3aef86d7-d34d-4b24-bc97-bf8c97d8d2fa;
  style 3aef86d7-d34d-4b24-bc97-bf8c97d8d2fa stroke:#2c3143,stroke-width:4px;
  17["Inspect AnnData"];
  15 -->|output_h5ad| 17;
  cd94a4c6-5665-4bdf-88ea-4f4d41efa893["Output\nGeneral - Filterbymito"];
  17 --> cd94a4c6-5665-4bdf-88ea-4f4d41efa893;
  style cd94a4c6-5665-4bdf-88ea-4f4d41efa893 stroke:#2c3143,stroke-width:4px;
  18["Scanpy FilterGenes"];
  15 -->|output_h5ad| 18;
  ee63ef0a-98ed-45cb-b144-1154f84ae452["Output\nFiltered Object"];
  18 --> ee63ef0a-98ed-45cb-b144-1154f84ae452;
  style ee63ef0a-98ed-45cb-b144-1154f84ae452 stroke:#2c3143,stroke-width:4px;
  19["Plot"];
  15 -->|output_h5ad| 19;
  7e48a14f-08fd-45ab-b613-606bf64dcf9d["Output\nViolin - Filterbymito"];
  19 --> 7e48a14f-08fd-45ab-b613-606bf64dcf9d;
  style 7e48a14f-08fd-45ab-b613-606bf64dcf9d stroke:#2c3143,stroke-width:4px;
  20["Inspect AnnData"];
  18 -->|output_h5ad| 20;
  d59efa9b-d049-4f0e-8bd8-8ae982a45d0a["Output\nGeneral - Filtered object"];
  20 --> d59efa9b-d049-4f0e-8bd8-8ae982a45d0a;
  style d59efa9b-d049-4f0e-8bd8-8ae982a45d0a stroke:#2c3143,stroke-width:4px;
  21["Scanpy NormaliseData"];
  18 -->|output_h5ad| 21;
  22["Scanpy FindVariableGenes"];
  21 -->|output_h5ad| 22;
  23["Scanpy ScaleData"];
  22 -->|output_h5ad| 23;
  24["Scanpy RunPCA"];
  23 -->|output_h5ad| 24;
  25["Plot"];
  24 -->|output_h5ad| 25;
  993dea99-990f-460a-beb9-46e5c97ee898["Output\nPCA Variance"];
  25 --> 993dea99-990f-460a-beb9-46e5c97ee898;
  style 993dea99-990f-460a-beb9-46e5c97ee898 stroke:#2c3143,stroke-width:4px;
  26["Scanpy ComputeGraph"];
  24 -->|output_h5ad| 26;
  27["Scanpy RunTSNE"];
  26 -->|output_h5ad| 27;
  28["Scanpy RunUMAP"];
  27 -->|output_h5ad| 28;
  29["Scanpy FindCluster"];
  28 -->|output_h5ad| 29;
  30["Scanpy FindMarkers"];
  29 -->|output_h5ad| 30;
  308b4961-4d50-442b-9bca-bbb1992426ba["Output\nMarkers - cluster"];
  30 --> 308b4961-4d50-442b-9bca-bbb1992426ba;
  style 308b4961-4d50-442b-9bca-bbb1992426ba stroke:#2c3143,stroke-width:4px;
  035bbbce-fb57-48c8-83d5-2b0cd0376541["Output\nFinal object"];
  30 --> 035bbbce-fb57-48c8-83d5-2b0cd0376541;
  style 035bbbce-fb57-48c8-83d5-2b0cd0376541 stroke:#2c3143,stroke-width:4px;
  31["Scanpy FindMarkers"];
  29 -->|output_h5ad| 31;
  1705e219-192a-4f52-9b26-64fcbcd303ea["Output\nMarkers - genotype"];
  31 --> 1705e219-192a-4f52-9b26-64fcbcd303ea;
  style 1705e219-192a-4f52-9b26-64fcbcd303ea stroke:#2c3143,stroke-width:4px;
  32["Scanpy PlotEmbed"];
  30 -->|output_h5ad| 32;
  33["Scanpy PlotEmbed"];
  30 -->|output_h5ad| 33;
  34["Manipulate AnnData"];
  30 -->|output_h5ad| 34;
  35["Scanpy PlotEmbed"];
  30 -->|output_h5ad| 35;
  36["Inspect AnnData"];
  30 -->|output_h5ad| 36;
  37["AnnData Operations"];
  34 -->|anndata| 37;
  30 -->|output_h5ad| 37;
  38["Join two Datasets"];
  30 -->|output_tsv| 38;
  36 -->|var| 38;
  39["Join two Datasets"];
  31 -->|output_tsv| 39;
  36 -->|var| 39;
  40["AnnData Operations"];
  37 -->|output_h5ad| 40;
  a6d48df0-403f-4efc-a75f-9504a960884e["Output\nFinal cell annotated object"];
  40 --> a6d48df0-403f-4efc-a75f-9504a960884e;
  style a6d48df0-403f-4efc-a75f-9504a960884e stroke:#2c3143,stroke-width:4px;
  41["Cut"];
  38 -->|out_file1| 41;
  0ee7f9b6-b065-4e26-93df-6e6e2fe458a9["Output\nMarkers - cluster - named"];
  41 --> 0ee7f9b6-b065-4e26-93df-6e6e2fe458a9;
  style 0ee7f9b6-b065-4e26-93df-6e6e2fe458a9 stroke:#2c3143,stroke-width:4px;
  42["Cut"];
  39 -->|out_file1| 42;
  fdb88faa-9b76-4edb-b89b-427c098a473e["Output\nMarkers - genotype - named"];
  42 --> fdb88faa-9b76-4edb-b89b-427c098a473e;
  style fdb88faa-9b76-4edb-b89b-427c098a473e stroke:#2c3143,stroke-width:4px;
  43["Scanpy PlotEmbed"];
  40 -->|output_h5ad| 43;

Inputs

Input Label
Input dataset Mito-counted AnnData

Outputs

From Output Label
toolshed.g2.bx.psu.edu/repos/iuc/anndata_inspect/anndata_inspect/0.7.5+galaxy1 Inspect AnnData
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_filter_cells/scanpy_filter_cells/1.8.1+galaxy0 Scanpy FilterCells
toolshed.g2.bx.psu.edu/repos/iuc/scanpy_plot/scanpy_plot/1.7.1+galaxy1 Plot
toolshed.g2.bx.psu.edu/repos/iuc/scanpy_plot/scanpy_plot/1.7.1+galaxy1 Plot
toolshed.g2.bx.psu.edu/repos/iuc/scanpy_plot/scanpy_plot/1.7.1+galaxy1 Plot
toolshed.g2.bx.psu.edu/repos/iuc/scanpy_plot/scanpy_plot/1.7.1+galaxy1 Plot
toolshed.g2.bx.psu.edu/repos/iuc/anndata_inspect/anndata_inspect/0.7.5+galaxy1 Inspect AnnData
toolshed.g2.bx.psu.edu/repos/iuc/scanpy_plot/scanpy_plot/1.7.1+galaxy1 Plot
toolshed.g2.bx.psu.edu/repos/iuc/anndata_inspect/anndata_inspect/0.7.5+galaxy1 Inspect AnnData
toolshed.g2.bx.psu.edu/repos/iuc/scanpy_plot/scanpy_plot/1.7.1+galaxy1 Plot
toolshed.g2.bx.psu.edu/repos/iuc/scanpy_plot/scanpy_plot/1.7.1+galaxy1 Plot
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_filter_cells/scanpy_filter_cells/1.8.1+galaxy0 Scanpy FilterCells
toolshed.g2.bx.psu.edu/repos/iuc/anndata_inspect/anndata_inspect/0.7.5+galaxy1 Inspect AnnData
toolshed.g2.bx.psu.edu/repos/iuc/anndata_inspect/anndata_inspect/0.7.5+galaxy1 Inspect AnnData
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_filter_cells/scanpy_filter_cells/1.8.1+galaxy0 Scanpy FilterCells
toolshed.g2.bx.psu.edu/repos/iuc/scanpy_plot/scanpy_plot/1.7.1+galaxy1 Plot
toolshed.g2.bx.psu.edu/repos/iuc/anndata_inspect/anndata_inspect/0.7.5+galaxy1 Inspect AnnData
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_filter_genes/scanpy_filter_genes/1.8.1+galaxy0 Scanpy FilterGenes
toolshed.g2.bx.psu.edu/repos/iuc/scanpy_plot/scanpy_plot/1.7.1+galaxy1 Plot
toolshed.g2.bx.psu.edu/repos/iuc/anndata_inspect/anndata_inspect/0.7.5+galaxy1 Inspect AnnData
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_normalise_data/scanpy_normalise_data/1.8.1+galaxy0 Scanpy NormaliseData
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_find_variable_genes/scanpy_find_variable_genes/1.8.1+galaxy0 Scanpy FindVariableGenes
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_scale_data/scanpy_scale_data/1.8.1+galaxy0 Scanpy ScaleData
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_run_pca/scanpy_run_pca/1.8.1+galaxy0 Scanpy RunPCA
toolshed.g2.bx.psu.edu/repos/iuc/scanpy_plot/scanpy_plot/1.7.1+galaxy1 Plot
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_compute_graph/scanpy_compute_graph/1.8.1+galaxy1 Scanpy ComputeGraph
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_run_tsne/scanpy_run_tsne/1.8.1+galaxy1 Scanpy RunTSNE
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_run_umap/scanpy_run_umap/1.8.1+galaxy0 Scanpy RunUMAP
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_find_cluster/scanpy_find_cluster/1.8.1+galaxy0 Scanpy FindCluster
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_find_markers/scanpy_find_markers/1.8.1+galaxy0 Scanpy FindMarkers
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_find_markers/scanpy_find_markers/1.8.1+galaxy0 Scanpy FindMarkers
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_plot_embed/scanpy_plot_embed/1.8.1+galaxy0 Scanpy PlotEmbed
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_plot_embed/scanpy_plot_embed/1.8.1+galaxy0 Scanpy PlotEmbed
toolshed.g2.bx.psu.edu/repos/iuc/anndata_manipulate/anndata_manipulate/0.7.5+galaxy1 Manipulate AnnData
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_plot_embed/scanpy_plot_embed/1.8.1+galaxy0 Scanpy PlotEmbed
toolshed.g2.bx.psu.edu/repos/iuc/anndata_inspect/anndata_inspect/0.7.5+galaxy1 Inspect AnnData
toolshed.g2.bx.psu.edu/repos/ebi-gxa/anndata_ops/anndata_ops/1.8.1+galaxy0 AnnData Operations
join1 Join two Datasets
join1 Join two Datasets
toolshed.g2.bx.psu.edu/repos/ebi-gxa/anndata_ops/anndata_ops/1.8.1+galaxy0 AnnData Operations
Cut1 Cut
Cut1 Cut
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_plot_embed/scanpy_plot_embed/1.8.1+galaxy0 Scanpy PlotEmbed

Tools

Tool Links
Cut1
join1
toolshed.g2.bx.psu.edu/repos/ebi-gxa/anndata_ops/anndata_ops/1.8.1+galaxy0 View in ToolShed
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_compute_graph/scanpy_compute_graph/1.8.1+galaxy1 View in ToolShed
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_filter_cells/scanpy_filter_cells/1.8.1+galaxy0 View in ToolShed
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_filter_genes/scanpy_filter_genes/1.8.1+galaxy0 View in ToolShed
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_find_cluster/scanpy_find_cluster/1.8.1+galaxy0 View in ToolShed
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_find_markers/scanpy_find_markers/1.8.1+galaxy0 View in ToolShed
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_find_variable_genes/scanpy_find_variable_genes/1.8.1+galaxy0 View in ToolShed
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_normalise_data/scanpy_normalise_data/1.8.1+galaxy0 View in ToolShed
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_plot_embed/scanpy_plot_embed/1.8.1+galaxy0 View in ToolShed
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_run_pca/scanpy_run_pca/1.8.1+galaxy0 View in ToolShed
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_run_tsne/scanpy_run_tsne/1.8.1+galaxy1 View in ToolShed
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_run_umap/scanpy_run_umap/1.8.1+galaxy0 View in ToolShed
toolshed.g2.bx.psu.edu/repos/ebi-gxa/scanpy_scale_data/scanpy_scale_data/1.8.1+galaxy0 View in ToolShed
toolshed.g2.bx.psu.edu/repos/iuc/anndata_inspect/anndata_inspect/0.7.5+galaxy1 View in ToolShed
toolshed.g2.bx.psu.edu/repos/iuc/anndata_manipulate/anndata_manipulate/0.7.5+galaxy1 View in ToolShed
toolshed.g2.bx.psu.edu/repos/iuc/scanpy_plot/scanpy_plot/1.7.1+galaxy1 View in ToolShed

To use these workflows in Galaxy you can either click the links to download the workflows, or you can right-click and copy the link to the workflow which can be used in the Galaxy form to import workflows.

Importing into Galaxy

Below are the instructions for importing these workflows directly into your Galaxy server of choice to start using them!
Hands-on: Importing a workflow
  • Click on Workflow on the top menu bar of Galaxy. You will see a list of all your workflows.
  • Click on galaxy-upload Import at the top-right of the screen
  • Provide your workflow
    • Option 1: Paste the URL of the workflow into the box labelled “Archived Workflow URL”
    • Option 2: Upload the workflow file in the box labelled “Archived Workflow File”
  • Click the Import workflow button

Below is a short video demonstrating how to import a workflow from GitHub using this procedure:

Video: Importing a workflow from URL

Version History

Version Commit Time Comments
1 327fd2b84 2022-11-12 17:14:25 Making a single cell topics

For Admins

Installing the workflow tools

wget https://training.galaxyproject.org/training-material/topics/single-cell/tutorials/scrna-case_basic-pipeline/workflows/CS3_Filter,_Plot_and_Explore_Single-cell_RNA-seq_Data.ga -O workflow.ga
workflow-to-tools -w workflow.ga -o tools.yaml
shed-tools install -g GALAXY -a API_KEY -t tools.yaml
workflow-install -g GALAXY -a API_KEY -w workflow.ga --publish-workflows