GTN_Exemplar_002_TMA_workflow_Feb2025
imaging-multiplex-tissue-imaging-TMA/gtn-exemplar-002-tma-workflow-feb2025
Launch in Tutorial Mode
question
galaxy-download Download
galaxy-download Download
flowchart TD 0["ℹ️ Input Dataset\nmarkers.csv"]; style 0 stroke:#2c3143,stroke-width:4px; 1["ℹ️ Input Dataset\nPhenotypeWorkflow"]; style 1 stroke:#2c3143,stroke-width:4px; 2["ℹ️ Input Collection\nRaw cycle images"]; style 2 stroke:#2c3143,stroke-width:4px; 3["Illumination correction with Basic"]; 2 -->|output| 3; 8a05fb69-9e2b-4fa4-ab8c-77d3241f7a86["Output\nDFP images"]; 3 --> 8a05fb69-9e2b-4fa4-ab8c-77d3241f7a86; style 8a05fb69-9e2b-4fa4-ab8c-77d3241f7a86 stroke:#2c3143,stroke-width:4px; a5432ed5-980f-4f04-83a2-b5514019b11b["Output\nFFP images"]; 3 --> a5432ed5-980f-4f04-83a2-b5514019b11b; style a5432ed5-980f-4f04-83a2-b5514019b11b stroke:#2c3143,stroke-width:4px; 4["Stitching and registration with Ashlar"]; 3 -->|output_dfp| 4; 3 -->|output_ffp| 4; 2 -->|output| 4; 0 -->|output| 4; 81f2c552-cd84-4d48-af14-eb252550f35a["Output\nRegistered image"]; 4 --> 81f2c552-cd84-4d48-af14-eb252550f35a; style 81f2c552-cd84-4d48-af14-eb252550f35a stroke:#2c3143,stroke-width:4px; 5["TMA dearray with UNetCoreograph"]; 4 -->|output| 5; d79b4449-f879-42a9-9c79-0e0a6df0fa79["Output\nDearray images"]; 5 --> d79b4449-f879-42a9-9c79-0e0a6df0fa79; style d79b4449-f879-42a9-9c79-0e0a6df0fa79 stroke:#2c3143,stroke-width:4px; c3ae2005-725a-487c-a77a-437636f3a296["Output\nTMA dearray map"]; 5 --> c3ae2005-725a-487c-a77a-437636f3a296; style c3ae2005-725a-487c-a77a-437636f3a296 stroke:#2c3143,stroke-width:4px; 0ed3e920-42ce-457d-9ebe-f0cd0baa1dea["Output\nDearray masks"]; 5 --> 0ed3e920-42ce-457d-9ebe-f0cd0baa1dea; style 0ed3e920-42ce-457d-9ebe-f0cd0baa1dea stroke:#2c3143,stroke-width:4px; 6["Nuclear segmentation"]; 5 -->|tma_sections| 6; 65c32086-b193-440f-b1a1-e5731bda0820["Output\nNuclear mask"]; 6 --> 65c32086-b193-440f-b1a1-e5731bda0820; style 65c32086-b193-440f-b1a1-e5731bda0820 stroke:#2c3143,stroke-width:4px; 7["Convert dearray images to OME-TIFF"]; 5 -->|tma_sections| 7; d1c85ec4-1aea-48ce-88c3-ede346d9b34f["Output\nConverted image"]; 7 --> d1c85ec4-1aea-48ce-88c3-ede346d9b34f; style d1c85ec4-1aea-48ce-88c3-ede346d9b34f stroke:#2c3143,stroke-width:4px; 8["Cell feature quantification with MC-Quant"]; 0 -->|output| 8; 5 -->|tma_sections| 8; 6 -->|mask| 8; a277be13-b5af-4591-b86b-a8679f561677["Output\nPrimary Mask Quantification"]; 8 --> a277be13-b5af-4591-b86b-a8679f561677; style a277be13-b5af-4591-b86b-a8679f561677 stroke:#2c3143,stroke-width:4px; 9["Rename OME-TIFF channels"]; 0 -->|output| 9; 7 -->|output| 9; 0867cba2-0ac1-413d-b6d0-aba8b2dcbe0c["Output\nRenamed image"]; 9 --> 0867cba2-0ac1-413d-b6d0-aba8b2dcbe0c; style 0867cba2-0ac1-413d-b6d0-aba8b2dcbe0c stroke:#2c3143,stroke-width:4px; 10["Convert to Anndata"]; 8 -->|cellmask| 10; a10efe57-5e36-4625-8ac8-a4bd27b3ce7e["Output\nAnndata feature table"]; 10 --> a10efe57-5e36-4625-8ac8-a4bd27b3ce7e; style a10efe57-5e36-4625-8ac8-a4bd27b3ce7e stroke:#2c3143,stroke-width:4px; 11["Scimap phenotyping"]; 10 -->|outfile| 11; 1 -->|output| 11; 1711b39d-79db-4012-80b6-abfae28439ae["Output\nPhenotyped feature table"]; 11 --> 1711b39d-79db-4012-80b6-abfae28439ae; style 1711b39d-79db-4012-80b6-abfae28439ae stroke:#2c3143,stroke-width:4px; 12["Create a Vitessce dashboard"]; 11 -->|output| 12; 9 -->|renamed_image| 12; 6 -->|mask| 12; 9093603f-8ee1-424b-8520-c5f5d3e9dc3d["Output\nVitessce dashboard"]; 12 --> 9093603f-8ee1-424b-8520-c5f5d3e9dc3d; style 9093603f-8ee1-424b-8520-c5f5d3e9dc3d stroke:#2c3143,stroke-width:4px;
Inputs
Input | Label |
---|---|
Input dataset | markers.csv |
Input dataset | PhenotypeWorkflow |
Input dataset collection | Raw cycle images |
Outputs
From | Output | Label |
---|---|---|
toolshed.g2.bx.psu.edu/repos/perssond/basic_illumination/basic_illumination/1.1.1+galaxy2 | BaSiC Illumination | Illumination correction with Basic |
toolshed.g2.bx.psu.edu/repos/perssond/ashlar/ashlar/1.18.0+galaxy1 | ASHLAR | Stitching and registration with Ashlar |
toolshed.g2.bx.psu.edu/repos/perssond/coreograph/unet_coreograph/2.2.8+galaxy1 | UNetCoreograph | TMA dearray with UNetCoreograph |
toolshed.g2.bx.psu.edu/repos/goeckslab/mesmer/mesmer/0.12.3+galaxy3 | Perform segmentation of multiplexed tissue data | Nuclear segmentation |
toolshed.g2.bx.psu.edu/repos/imgteam/bfconvert/ip_convertimage/6.7.0+galaxy0 | Convert image | Convert dearray images to OME-TIFF |
toolshed.g2.bx.psu.edu/repos/perssond/quantification/quantification/1.6.0+galaxy0 | MCQUANT | Cell feature quantification with MC-Quant |
toolshed.g2.bx.psu.edu/repos/goeckslab/rename_tiff_channels/rename_tiff_channels/0.0.2+galaxy1 | Rename OME-TIFF channels | Rename OME-TIFF channels |
toolshed.g2.bx.psu.edu/repos/goeckslab/scimap_mcmicro_to_anndata/scimap_mcmicro_to_anndata/2.1.0+galaxy2 | Convert McMicro Output to Anndata | Convert to Anndata |
toolshed.g2.bx.psu.edu/repos/goeckslab/scimap_phenotyping/scimap_phenotyping/2.1.0+galaxy2 | Single Cell Phenotyping | Scimap phenotyping |
toolshed.g2.bx.psu.edu/repos/goeckslab/vitessce_spatial/vitessce_spatial/3.5.1+galaxy0 | Vitessce | Create a Vitessce dashboard |
Tools
To use these workflows in Galaxy you can either click the links to download the workflows, or you can right-click and copy the link to the workflow which can be used in the Galaxy form to import workflows.
Importing into Galaxy
Below are the instructions for importing these workflows directly into your Galaxy server of choice to start using them!Hands On: Importing a workflow
- Click on galaxy-workflows-activity Workflows in the Galaxy activity bar (on the left side of the screen, or in the top menu bar of older Galaxy instances). You will see a list of all your workflows
- Click on galaxy-upload Import at the top-right of the screen
- Provide your workflow
- Option 1: Paste the URL of the workflow into the box labelled “Archived Workflow URL”
- Option 2: Upload the workflow file in the box labelled “Archived Workflow File”
- Click the Import workflow button
Below is a short video demonstrating how to import a workflow from GitHub using this procedure:
Video: Importing a workflow from URL
Version History
Version | Commit | Time | Comments |
---|---|---|---|
4 | 5ec91efd3 | 2025-03-11 16:26:14 | add redirect. Use smaller test data for CI. add workflow annotations |
3 | ca2c7b0af | 2025-03-05 16:36:03 | add workflow step annotations, labels. rename -tests.yml file for linter |
2 | dc3710c1a | 2025-03-04 21:36:11 | add orcid to workflow for linting |
1 | 5fe1d4e05 | 2025-03-04 21:27:15 | fix small workflow errors, update answer key history, add workflow tests |
For Admins
Installing the workflow tools
wget https://training.galaxyproject.org/training-material/topics/imaging/tutorials/multiplex-tissue-imaging-TMA/workflows/GTN_Exemplar_002_TMA_workflow_Feb2025.ga -O workflow.ga workflow-to-tools -w workflow.ga -o tools.yaml shed-tools install -g GALAXY -a API_KEY -t tools.yaml workflow-install -g GALAXY -a API_KEY -w workflow.ga --publish-workflows