GTN - ChIP Seq - Formation Of Super Structures On Xi

epigenetics-formation_of_super-structures_on_xi/formation-of-super-structures-on-xi

Author(s)
Friederike Dündar, Anika Erxleben, Bérénice Batut, Vivek Bhardwaj, Fidel Ramirez, Leily Rabbani, Pavankumar Videm
version Version
5
last_modification Last updated
Jul 17, 2023
license License
CC-BY-4.0
galaxy-tags Tags
epigenetics

Features

Tutorial
hands_on Formation of the Super-Structures on the Inactive X

Workflow Testing
Tests: ✅
Results: Not yet automated
FAIRness purl PURL
https://gxy.io/GTN:W00068
RO-Crate logo with flask Download Workflow RO-Crate Workflowhub cloud with gears logo View on (Dev) WorkflowHub
Launch in Tutorial Mode question
galaxy-download Download
flowchart TD
  0["ℹ️ Input Dataset\nwt_H3K4me3_read2.fastq.gz"];
  style 0 stroke:#2c3143,stroke-width:4px;
  1["ℹ️ Input Dataset\nwt_H3K4me3_read1.fastq.gz"];
  style 1 stroke:#2c3143,stroke-width:4px;
  2["ℹ️ Input Dataset\nwt_input_rep1.bam"];
  style 2 stroke:#2c3143,stroke-width:4px;
  3["ℹ️ Input Dataset\nwt_H3K4me3_rep1.bam"];
  style 3 stroke:#2c3143,stroke-width:4px;
  4["ℹ️ Input Dataset\nwt_CTCF_rep1.bam"];
  style 4 stroke:#2c3143,stroke-width:4px;
  5["ℹ️ Input Dataset\nwt_H3K27me3_rep1.bam"];
  style 5 stroke:#2c3143,stroke-width:4px;
  6["ℹ️ Input Dataset\nwt_input_rep2.bam"];
  style 6 stroke:#2c3143,stroke-width:4px;
  7["ℹ️ Input Dataset\nwt_H3K4me3_rep2.bam"];
  style 7 stroke:#2c3143,stroke-width:4px;
  8["ℹ️ Input Dataset\nwt_CTCF_rep2.bam"];
  style 8 stroke:#2c3143,stroke-width:4px;
  9["ℹ️ Input Dataset\nwt_H3K27me3_rep2.bam"];
  style 9 stroke:#2c3143,stroke-width:4px;
  10["FastQC"];
  0 -->|output| 10;
  892e22b2-3194-4076-af80-357530c17186["Output\nwt_H3K4me3_rep1_read2_fastqc"];
  10 --> 892e22b2-3194-4076-af80-357530c17186;
  style 892e22b2-3194-4076-af80-357530c17186 stroke:#2c3143,stroke-width:4px;
  11["Trim Galore!"];
  1 -->|output| 11;
  0 -->|output| 11;
  a66a6432-690f-4e66-88c0-7eba0a014677["Output\nwt_H3K4me3_rep1_trim_galore"];
  11 --> a66a6432-690f-4e66-88c0-7eba0a014677;
  style a66a6432-690f-4e66-88c0-7eba0a014677 stroke:#2c3143,stroke-width:4px;
  12["FastQC"];
  1 -->|output| 12;
  da453096-fdd9-44ee-b83b-e4eca5c800f9["Output\nwt_H3K4me3_rep1_read1_fastqc"];
  12 --> da453096-fdd9-44ee-b83b-e4eca5c800f9;
  style da453096-fdd9-44ee-b83b-e4eca5c800f9 stroke:#2c3143,stroke-width:4px;
  13["Samtools idxstats"];
  2 -->|output| 13;
  14["bamCoverage"];
  2 -->|output| 14;
  15["bamCoverage"];
  3 -->|output| 15;
  16["bamCoverage"];
  3 -->|output| 16;
  73e2f018-d9e4-4f74-8110-598b9b43a940["Output\nwt_H3K4me3_rep1_bamcoverage"];
  16 --> 73e2f018-d9e4-4f74-8110-598b9b43a940;
  style 73e2f018-d9e4-4f74-8110-598b9b43a940 stroke:#2c3143,stroke-width:4px;
  17["Samtools idxstats"];
  3 -->|output| 17;
  09449d6f-ce88-4448-9928-064c729c32d1["Output\nwt_H3K4me3_rep1_idxstats"];
  17 --> 09449d6f-ce88-4448-9928-064c729c32d1;
  style 09449d6f-ce88-4448-9928-064c729c32d1 stroke:#2c3143,stroke-width:4px;
  18["plotFingerprint"];
  3 -->|output| 18;
  2 -->|output| 18;
  19["bamCompare"];
  3 -->|output| 19;
  2 -->|output| 19;
  20["MACS2 callpeak"];
  2 -->|output| 20;
  3 -->|output| 20;
  a36b5a6c-d992-4a2d-8fd8-95e8eac74cbd["Output\nwt_H3K4me3_input_rep1_macs2"];
  20 --> a36b5a6c-d992-4a2d-8fd8-95e8eac74cbd;
  style a36b5a6c-d992-4a2d-8fd8-95e8eac74cbd stroke:#2c3143,stroke-width:4px;
  21["bamCompare"];
  3 -->|output| 21;
  2 -->|output| 21;
  5174d1aa-21f6-4187-8935-70ba8bd0f6e0["Output\nwt_H3K4me3_input_rep1_bamcompare"];
  21 --> 5174d1aa-21f6-4187-8935-70ba8bd0f6e0;
  style 5174d1aa-21f6-4187-8935-70ba8bd0f6e0 stroke:#2c3143,stroke-width:4px;
  22["bamCompare"];
  4 -->|output| 22;
  2 -->|output| 22;
  23["MACS2 callpeak"];
  2 -->|output| 23;
  4 -->|output| 23;
  24["bamCompare"];
  4 -->|output| 24;
  2 -->|output| 24;
  25["bamCompare"];
  5 -->|output| 25;
  2 -->|output| 25;
  26["MACS2 callpeak"];
  2 -->|output| 26;
  5 -->|output| 26;
  27["bamCompare"];
  7 -->|output| 27;
  6 -->|output| 27;
  28["MACS2 callpeak"];
  6 -->|output| 28;
  7 -->|output| 28;
  29["bamCompare"];
  8 -->|output| 29;
  6 -->|output| 29;
  30["MACS2 callpeak"];
  6 -->|output| 30;
  8 -->|output| 30;
  31["multiBamSummary"];
  2 -->|output| 31;
  3 -->|output| 31;
  4 -->|output| 31;
  5 -->|output| 31;
  6 -->|output| 31;
  7 -->|output| 31;
  8 -->|output| 31;
  9 -->|output| 31;
  32["bamCompare"];
  9 -->|output| 32;
  6 -->|output| 32;
  33["MACS2 callpeak"];
  6 -->|output| 33;
  9 -->|output| 33;
  34["Bowtie2"];
  11 -->|trimmed_reads_pair1| 34;
  11 -->|trimmed_reads_pair2| 34;
  4c3ca5b1-2298-4bb4-8d2f-f62619f35158["Output\nwt_H3K4me3_rep1_bowtie2"];
  34 --> 4c3ca5b1-2298-4bb4-8d2f-f62619f35158;
  style 4c3ca5b1-2298-4bb4-8d2f-f62619f35158 stroke:#2c3143,stroke-width:4px;
  35["Concatenate datasets"];
  20 -->|output_narrowpeaks| 35;
  23 -->|output_narrowpeaks| 35;
  36["plotCorrelation"];
  31 -->|outFile| 36;
  37["Concatenate datasets"];
  20 -->|output_narrowpeaks| 37;
  23 -->|output_narrowpeaks| 37;
  26 -->|output_narrowpeaks| 37;
  28 -->|output_narrowpeaks| 37;
  30 -->|output_narrowpeaks| 37;
  33 -->|output_narrowpeaks| 37;
  38["bedtools SortBED"];
  35 -->|out_file1| 38;
  39["bedtools SortBED"];
  37 -->|out_file1| 39;
  40["bedtools MergeBED"];
  38 -->|output| 40;
  931eb26a-0e5d-4556-b67f-1c37372aaf28["Output\nwt_H3K4me3_CTCF_rep1_mergebed"];
  40 --> 931eb26a-0e5d-4556-b67f-1c37372aaf28;
  style 931eb26a-0e5d-4556-b67f-1c37372aaf28 stroke:#2c3143,stroke-width:4px;
  41["bedtools MergeBED"];
  39 -->|output| 41;
  9c4c5a1f-f2c1-4e83-b1f9-ff32ee48baeb["Output\nwt_all_mergebed"];
  41 --> 9c4c5a1f-f2c1-4e83-b1f9-ff32ee48baeb;
  style 9c4c5a1f-f2c1-4e83-b1f9-ff32ee48baeb stroke:#2c3143,stroke-width:4px;
  42["computeMatrix"];
  19 -->|outFileName| 42;
  22 -->|outFileName| 42;
  40 -->|output| 42;
  43["computeMatrix"];
  19 -->|outFileName| 43;
  22 -->|outFileName| 43;
  25 -->|outFileName| 43;
  27 -->|outFileName| 43;
  29 -->|outFileName| 43;
  32 -->|outFileName| 43;
  41 -->|output| 43;
  44["plotHeatmap"];
  42 -->|outFileName| 44;
  45["plotHeatmap"];
  43 -->|outFileName| 45;

Inputs

Input Label
Input dataset wt_H3K4me3_read2.fastq.gz
Input dataset wt_H3K4me3_read1.fastq.gz
Input dataset wt_input_rep1.bam
Input dataset wt_H3K4me3_rep1.bam
Input dataset wt_CTCF_rep1.bam
Input dataset wt_H3K27me3_rep1.bam
Input dataset wt_input_rep2.bam
Input dataset wt_H3K4me3_rep2.bam
Input dataset wt_CTCF_rep2.bam
Input dataset wt_H3K27me3_rep2.bam

Outputs

From Output Label
toolshed.g2.bx.psu.edu/repos/devteam/fastqc/fastqc/0.73+galaxy0 FastQC
toolshed.g2.bx.psu.edu/repos/bgruening/trim_galore/trim_galore/0.6.7+galaxy0 Trim Galore!
toolshed.g2.bx.psu.edu/repos/devteam/fastqc/fastqc/0.73+galaxy0 FastQC
toolshed.g2.bx.psu.edu/repos/bgruening/deeptools_bam_coverage/deeptools_bam_coverage/3.5.1.0.0 bamCoverage
toolshed.g2.bx.psu.edu/repos/devteam/samtools_idxstats/samtools_idxstats/2.0.4 Samtools idxstats
toolshed.g2.bx.psu.edu/repos/iuc/macs2/macs2_callpeak/2.2.7.1+galaxy0 MACS2 callpeak
toolshed.g2.bx.psu.edu/repos/bgruening/deeptools_bam_compare/deeptools_bam_compare/3.5.1.0.0 bamCompare
toolshed.g2.bx.psu.edu/repos/devteam/bowtie2/bowtie2/2.5.0+galaxy0 Bowtie2
toolshed.g2.bx.psu.edu/repos/iuc/bedtools/bedtools_mergebed/2.30.0 bedtools MergeBED
toolshed.g2.bx.psu.edu/repos/iuc/bedtools/bedtools_mergebed/2.30.0 bedtools MergeBED

Tools

Tool Links
cat1
toolshed.g2.bx.psu.edu/repos/bgruening/deeptools_bam_compare/deeptools_bam_compare/3.5.1.0.0 View in ToolShed
toolshed.g2.bx.psu.edu/repos/bgruening/deeptools_bam_coverage/deeptools_bam_coverage/3.5.1.0.0 View in ToolShed
toolshed.g2.bx.psu.edu/repos/bgruening/deeptools_compute_matrix/deeptools_compute_matrix/3.5.1.0.0 View in ToolShed
toolshed.g2.bx.psu.edu/repos/bgruening/deeptools_multi_bam_summary/deeptools_multi_bam_summary/3.5.1.0.0 View in ToolShed
toolshed.g2.bx.psu.edu/repos/bgruening/deeptools_plot_correlation/deeptools_plot_correlation/3.5.1.0.0 View in ToolShed
toolshed.g2.bx.psu.edu/repos/bgruening/deeptools_plot_fingerprint/deeptools_plot_fingerprint/3.5.1.0.0 View in ToolShed
toolshed.g2.bx.psu.edu/repos/bgruening/deeptools_plot_heatmap/deeptools_plot_heatmap/3.5.1.0.1 View in ToolShed
toolshed.g2.bx.psu.edu/repos/bgruening/trim_galore/trim_galore/0.6.7+galaxy0 View in ToolShed
toolshed.g2.bx.psu.edu/repos/devteam/bowtie2/bowtie2/2.5.0+galaxy0 View in ToolShed
toolshed.g2.bx.psu.edu/repos/devteam/fastqc/fastqc/0.73+galaxy0 View in ToolShed
toolshed.g2.bx.psu.edu/repos/devteam/samtools_idxstats/samtools_idxstats/2.0.4 View in ToolShed
toolshed.g2.bx.psu.edu/repos/iuc/bedtools/bedtools_mergebed/2.30.0 View in ToolShed
toolshed.g2.bx.psu.edu/repos/iuc/bedtools/bedtools_sortbed/2.30.0+galaxy2 View in ToolShed
toolshed.g2.bx.psu.edu/repos/iuc/macs2/macs2_callpeak/2.2.7.1+galaxy0 View in ToolShed

To use these workflows in Galaxy you can either click the links to download the workflows, or you can right-click and copy the link to the workflow which can be used in the Galaxy form to import workflows.

Importing into Galaxy

Below are the instructions for importing these workflows directly into your Galaxy server of choice to start using them!
Hands-on: Importing a workflow
  • Click on Workflow on the top menu bar of Galaxy. You will see a list of all your workflows.
  • Click on galaxy-upload Import at the top-right of the screen
  • Provide your workflow
    • Option 1: Paste the URL of the workflow into the box labelled “Archived Workflow URL”
    • Option 2: Upload the workflow file in the box labelled “Archived Workflow File”
  • Click the Import workflow button

Below is a short video demonstrating how to import a workflow from GitHub using this procedure:

Video: Importing a workflow from URL

Version History

Version Commit Time Comments
7 55233fdd5 2023-07-17 13:47:25 Add licence and update author ids
6 9875d8031 2023-07-17 12:32:50 Update ChIP-Seq tutorial with latest tool versions and links
5 667ff3de9 2020-01-22 10:59:29 annotation
4 eb4d724e0 2020-01-15 10:41:35 Workflow renaming
3 a2af3178a 2020-01-13 12:49:19 GTN - ChIP-Seq - formation_of_super
2 ca7c701bf 2020-01-13 10:36:55 formation_of_super_structures_on_xi.ga
1 7e63a811a 2019-09-12 08:26:50 Move chip-seq tutorials to epigenetics topic

For Admins

Installing the workflow tools

wget https://training.galaxyproject.org/training-material/topics/epigenetics/tutorials/formation_of_super-structures_on_xi/workflows/formation_of_super_structures_on_xi.ga -O workflow.ga
workflow-to-tools -w workflow.ga -o tools.yaml
shed-tools install -g GALAXY -a API_KEY -t tools.yaml
workflow-install -g GALAXY -a API_KEY -w workflow.ga --publish-workflows