Nanopore sequencing

Nanopore sequencing has several properties that make it well-suited for our purposes

  1. Long-read sequencing technology offers simplified and less ambiguous genome assembly
  2. Long-read sequencing gives the ability to span repetitive genomic regions
  3. Long-read sequencing makes it possible to identify large structural variations

How nanopore sequencing works

When using Oxford Nanopore Technologies (ONT) sequencing, the change in electrical current is measured over the membrane of a flow cell. When nucleotides pass the pores in the flow cell the current change is translated (basecalled) to nucleotides by a basecaller. A schematic overview is given in the picture above.

When sequencing using a MinIT or MinION Mk1C, the basecalling software is present on the devices. With basecalling the electrical signals are translated to bases (A,T,G,C) with a quality score per base. The sequenced DNA strand will be basecalled and this will form one read. Multiple reads will be stored in a fastq file.